
Mapping the Dark Universe with Weak Gravitational
Lensing

Rachel N McInnes∗

Institute for Astronomy, Royal Observatory of Edinburgh, Blackford Hill, Edinburgh, EH9 3HJ

Pedagogical Seminar, 25th March 2008

Contents

1 Introduction to Lensing Theory 1
1.1 Applications of Gravitational Lensing . . . . . . . . . . . . . .. . . . . . . . 2

2 Measurements of Shapes and Shear 2
2.1 The Principles of Weak Gravitational Lensing . . . . . . . . .. . . . . . . . . 4

2.1.1 Light Deflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Deflection Angle of a Point Mass . . . . . . . . . . . . . . . . . . . .5
2.1.3 The Lens Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Mapping between the Source and the Image Plane . . . . . . . . .. . . . . . . 6

3 From Shear to Convergence - Making 2D Mass Maps 7

4 E and B modes 8

5 Power Spectra and Correlation 9

A Appendix 11
A.1 Derivation of the deflection angle from the Geodesic Equation . . . . . . . . . 11

B Appendix 17
B.1 Derivation of the deflection angle from the Euler-Lagrange Equation . . . . . . 17

∗rnm@roe.ac.uk

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H



1 INTRODUCTION TO LENSING THEORY 1

Figure 1: The bullet cluster. The mass map (dark matter) is shown in blue, and the xray is shown in
purple, both on top of the optical image. The dark matter map has been made using gravitational lensing
mass reconstruction - a unique way to probe dark matter. You can see that the xray gas has interacted
when the two clusters have passed through each other, while the majority of the mass of the 2 clusters
has not interacted, and have passed without a collision. This is evidence for collisionless dark matter.

1 Introduction to Lensing Theory

Tidal gravitational fields cause differential deflection oflight rays. This means that the size and
shape of their projection on the sky are changed. In some cases the deflection can be so strong
that luminousarcsor Einstein ringsare observed. And in extreme cases light rays passing close
to a sufficiently massive body can be bent so strongly that multiple rays can reach the observer.
This means that multiple images of the same object are observed, each in the direction that a
ray has arrived. (See Kochanek (2004) for more detail)

Einstein rings, arcs, and multiple images are all effects classed asStrongGravitational Lens-
ing. Weaker gravitational effects occur more often, however. Although these weak distortions
are small and can hardly be noticed in an individual image, the net distortion averaged over an
area of sky can be detected. These distortion effects due toWeakLensing can be used to give
us statistical properties of the matter distribution between us and the lensed source.

In a third Lensing régime —Micro-Lensing — magnification ofa distant source can occur.
Micro-Lensing can be thought of as a version of Strong Lensing where the image separation is
too small to be resolved. Multiple images are formed but their separations are below the limiting
resolution of our observations and this causes the source toappear magnified. Micro-lensing
occurs for sufficiently small lens masses (such as a star), and for sufficiently distant sources and
lenses. This magnification effect is sometimes referred to as a “a cosmic telescope”. This is
because it lets us observe objects which would otherwise be too faint or distant to observe. (See
Wambsganss (2006) for further detail)

Whether Strong, Weak or Micro-Lensing effects are seen depends on the the size of the
lensing potential, which we will meet shortly.
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Figure 2:Arcs caused by Gravitational Lensing (Bartelmann, 2006).

1.1 Applications of Gravitational Lensing

Gravitational Lensing is a tool which is used by observational cosmologists. There are two main
areas which this tool can be applied: 1) probing dark matter and 2) probing the geometry of the
universe.

1. Gravitational Lensing depends only on the projected 2D mass distribution of the lens and
not on whether the matter is baryonic matter or dark matter. Dark matter can thus be
investigated using this method as the lens is independent ofluminosity and composition.

2. Gravitational Lensing not only tells us about the lensingobject, but about the space that
the light ray has travelled through to reach us from its source. Cosmological parameters
including the Hubble constant, the cosmological constant and the density parameter of
the universe can all be constrained through lensing.

2 Measurements of Shapes and Shear

There are different ways to measure the shape of an object. The method described here is the
one set out in Kaiser, Squires & Broadhurst (1995) and Schneider (2006).

In order to define the ellipticity of an object, we must first define the centre of the image,θ,

θ =

∫

d2θ I (θ)qI [I (θ)]θ
∫

d2θ I (θ)qI [I (θ)]
(1)

whereI (θ) is the brightness distribution of the image, andqI (I ) is a weight function.
We next define the tensor ofsecond brightness moments,

Qi j =

∫

d2θ I (θ)qI [I (θ)](θi − θi)(θ j − θ j)
∫

d2θ I (θ)qI [I (θ)]
, i, j ∈ {1, 2} . (2)

The trace ofQ describes the size of the image, and the traceless part givesus the ellipticity
information.
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Figure 3: Shape of image ellipses for a circular source, in terms ofχ1 againstχ2. A plot of e1

againste2 would look quite similar.(Schneider, 2006)

From Eq. (2), two complex ellipticities can be defined:

χ ≡
Q11 − Q22 + 2iQ12

Q11 + Q22
; ǫ ≡

Q11 − Q22 + 2iQ12

Q11 + Q22 + 2
(

Q11Q22 − Q2
12

)
1
2

(3)

Figure 3 shows the shape of image ellipses for a circular source, in terms of their two
ellipticity components,χ1 andχ2.

To transform between the source and image ellipticities, the following relation can be used
(Seitz & Schneider, 1997)

χ(s)
=

χ − 2g+ g2χ∗

1+ |g|2 − 2Re(gχ∗)
; ǫ(s) =























ǫ−g
1−g∗ǫ if |g| ≤ 1 ;

1−gǫ∗
ǫ∗−g∗ if |g| > 1 .

(4)

whereg = g(z) = γ(z)
1−κ(z) is called thereduced shear.

In the weak lensing régime (κ ≪ 1, |γ| ≪ 1) , the reduced shear|g| ≪ 1 and Eq. 4 reduces
to (wheree is ellipticity defined either asχ or ǫ)

e′ = es
+ 2g . (5)

If we assume that the sources are randomly orientated then the expectation value of the
source ellipticities will vanish and we can write:

〈es〉 = 0 . (6)

Taking the average of Eq. 5 we see that:

〈e′〉 = 0+ 2〈g〉 , (7)

and if these sources are in small enough area of sky, we can assume that the light from each of
these galaxies experiences the same shear , and so we now can write

γ ≈ g ≈ 〈g〉 =
〈e′〉
2
. (8)
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Note the factor of 2 here for this definition of ellipticity.1

2.1 The Principles of Weak Gravitational Lensing

2.1.1 Light Deflection

In the weak lensing limit we can write the metric as

ds2
=

(

1+
2Φ
c2

)

c2dt2 −

(

1−
2Φ
c2

)

R2(t)
[

dr2
+ S2

k(r)dβ
2
]

, (9)

whereΦ is the peculiar gravitational potential and the requirement for a weak field is that
|Φ| ≪ c2.

For weak fields we use Eq. (9) as our metric and defineconformal time, in place of the usual
time coordinate. Conformal time is defined by

dη =
cdt
R(t)
. (10)

This allows us to re-write Eq. (9) more simply:

ds2
= R2(t)

{(

1+
2Φ
c2

)

dη2 −

(

1−
2Φ
c2

)

[

dr2
+ S2

k(r)
(

dθ2x + dθ2y
)]

}

. (11)

We can now write the metric tensor for the weakly perturbed flat FLRW metric as

R2(t)































1+ 2Φ/c2 0 0 0
0 −(1− 2Φ/c2) 0 0
0 0 −r2(1− 2Φ/c2) 0
0 0 0 −r2(1− 2Φ/c2)































. (12)

The most compact way to derive the deflection angle is using the Euler-Lagrange equation.
Please see Appendix B for the full derivation. This allows usto write the result:

d2X
dη2
= −

2
c2
∇⊥Φ . (13)

where∇⊥ =
(

d
dX,

d
dY

)

.

The integral of−d2X
dη2 along the path gives us thetotal deflection angle,

α̂ =
2
c2

∫ B

A
∇⊥Φdλ . (14)

In the cases we are interested in, the deflection angle is verysmall. So we can make a small
angle approximation (known as Born’s approximation), thatthe deflection angle is the same if
we integrated not along the deflected ray, but along theunperturbedray.
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Figure 4:Light deflection by a point mass. The unperturbed ray passes the massM at impact parameter
b and is deflected by angle ˆα (Narayan & Bartelmann, 1996).

2.1.2 Deflection Angle of a Point Mass

To illustrate the above situation, we will now consider the deflection angle of a point mass M
along thez axis (See Figure 4). The impact parameter,b, is the closest approach distance,
and most of the deflection occurs within∆z ∼ ±b of the closest approach. The (Newtonian)
gravitational potential of the lens is

Φ = −
GM

r
= −

GM
(

b2 + z2
)

1
2

. (15)

We now calculate an expression for∇⊥Φ

∇⊥Φ(b, z) =
GMb

(

b2 + z2
)

3
2

, (16)

and substitute this into Eq. (14) to give us another expression for the deflection angle

α̂ =
2
c2

∫

∇⊥Φdz=
4GM
c2b

=
2
b

Rs , (17)

whereRs is the Schwarzschild radius of the point mass. This allows usto say that the deflection
angle is just twice the inverse of the impact parameter in units of the Schwarzschild radius. Note
that this deflection angle calculated using General Relativity is exactly twice the value of the
angle calculated with Newtonian physics.

2.1.3 The Lens Equation

Figure 5 shows the source plane and the image plane of the gravitational lens system. (Here,
and for the following section, please now refer to Narayan & Bartelmann (1996)).θ is used as
coordinates for the image(s) andβ for the source(s). They are related by Eq. (18)

Dsβ = Dsθ − Ddsα̂ , (18)

1Depending on how ellipticity has been defined, you will see inthe literature that sometimesγ ≈ 〈e′〉 is used.
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Figure 5:Diagram showing the angles and distances between the observer, lens plane, and source plane
(Bartelmann & Schneider, 2001).

whereDd, Dds andDs are the angular diameter distances between the observer andlens, lens
and source, and observer and source respectively.2

We now define thereduced deflection angle, α and define it to be

α ≡
Dds

Ds
α̂ . (19)

This allows us to write the simplelens equation(or ray-tracing equation):

β = θ − α . (20)

2.2 Mapping between the Source and the Image Plane

The local imaging properties of the lens mapping between the source and the image plane are
described by the Jacobian matrix,A. (See Figure 6)

A ≡
∂β

∂θ
= I −

∂α

∂θ
(21)

A is also known as theamplification matrix. A is symmetric and we can decompose it into
an isotropic and an anisotropic term as follows.

Ai j =

[

1− κ 0
0 1− κ

]

+

[

−γ1 −γ2

−γ2 γ1

]

(22)

2Note that, in general,Dds , Ds − Dd because these are angular diameter distances.
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Figure 6:Illustration of how the Jacobian relates the source and the image (Bartelmann, 2006)

The first term is the isotropic expansion expansion term (this is the convergence3 that we
met earlier in the section) and the second term is theshearterm. An illustration of the effects
of each of these is shown in Figure 7.

The amplification matrix can also be written in terms of components of the lensing potential
as follows,

Ai j = δi j − ∂i∂ jϕ , (23)

whereδi j is the kronecker delta. We can break this down into the diagonal and off-diagonal part
as follows:

Ai j = δi j −

[

1
2
∂2ϕδi j +

(

∂i∂ jϕ −
1
2
δi j∂

2ϕ

)]

= δi j −
[

κδi j + γi j

]

. (24)

Using the trace ofA and equating Eqs. (22) and (23) lead us to the following:

γ1 =
1
2

(ϕ11− ϕ22) , (25)

γ2 = ϕ12 = ϕ21 , (26)

κ =
1
2

(ϕ11 + ϕ22) . (27)

The effects of gravitational lensing on a circular source are shown in Figure 7.

3 From Shear to Convergence - Making 2D Mass Maps

In this notation, we can expressκ andγ as follows

κ =
1
2
∂2ϕ , (28)

3The termConvergencecomes from light deflection in empty space. Do remember that,in practice, this can
often be an expansion term.
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Figure 7: There are two basic types of distortion in gravitational lensing. The convergence which is
isotropic, and the shear which is anisotropic (Narayan & Bartelmann, 1996)

Now we can writeγ as (Brown et al., 2003)

γi j =

[

−γ1 −γ2

−γ2 γ1

]

= ∂i∂ jϕ −
1
2
∂2ϕδi j . (29)

Using this equation, we perform the operation∂i∂ j to Eq. (29):

∂i∂ jγi j = ∂
2∂2ϕ −

1
2
∂2ϕ =

1
2
∂2∂2ϕ = ∂2κ (30)

so we can write the following relation forκ:

κ = ∂−2∂i∂ jγi j + c , (31)

wherec is a constant of integration.
Using the Fourier Transform Relations below, kappa can be calculated easily using the shear.

Fourier Transform Relations
∂i = −il i , (32)

∂2
= −|l|2 , (33)

∂−2
= −

1
l2
. (34)

4 E and B modes

The scalar gravitational potential should only produce a curl-free shear signal. The existence
of any significant curl component should be treated as a systematic shear error. We can split
the shear (or the convergence) into two modes, one which measures the divergence, and one
which measures the curl. We call thisE and B mode decomposition, with the E mode being the
allowed curl-free component and the B mode being the systematic curl component. Figure 8
shows the E modes generated by over-densities (top left) andunder-densities (top right). The
bottom panels show the two curl modes which are not created byGravitational Lensing.

You will notice that the B modes are a 45◦ rotation of the E modes. So to test for systematics
(B modes) we can rotate the data by 45◦ and repeat the same analysis. Anything which is a B
mode will now show up as a signal.
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Figure 8: The top panel shows allowed E modes created by GravitationalLensing. The bottom panel
shows B modes which are not allowed by a scalar gravitationalpotential. (Van Waerbeke & Mellier,
2003).

5 Power Spectra and Correlation

The E and B modepower spectraare related toκE,l andκB,l as follows,

PE
κ,l =

〈|κE,l|
2〉

N4∆ ln l
, (35)

PB
κ,l =

〈|κB,l|
2〉

N4∆ ln l
. (36)

We then define the E and B modecorrelationsas the inverse fast fourier transform of these
quantities.
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A Appendix

A.1 Derivation of the deflection angle from the Geodesic Equation

The geodesic equation from General Relativity governs the wordline xλ (λ = 0, 1, 2, 3) of a
particle. It is written as follows:

d2xµ

dp2
+ Γ

µ
νσ

dxν

dp
dxσ

dp
= 0 , (37)

where p is an affine parameter.Γµνσ is theaffine connection, which can be written in terms of the
metric tensorgµν as

Γ
µ
νσ =

1
2

gµρ
{

∂gνρ
∂xσ
+
∂gρσ
∂xν
−
∂gνσ
∂xρ

}

. (38)

Or, equivalently, in alternative notation:

ẍµ + Γµνσ ẋν ẋσ = 0 . (39)

Γ
µ
νσ =

1
2

gµρ
{

gνρ,σ + gρσ,ν − gνσ,ρ
}

. (40)

Note that a dot denotesd/dp throughout this section.
For weak fields we use Eq. (9) as our metric and defineconformal time, in place of the usual

time coordinate. Conformal time is defined by

dη =
cdt
R(t)
. (41)

This allows us to re-write Eq. (9) more simply:

ds2
= R2(t)

{(

1+
2Φ
c2

)

dη2 −

(

1−
2Φ
c2

)

[

dr2
+ S2

k(r)
(

dθ2x + dθ2y
)]

}

. (42)

We can now write the metric tensor for the weakly perturbed flat FLRW metric as

R2(t)































1+ 2Φ/c2 0 0 0
0 −(1− 2Φ/c2) 0 0
0 0 −r2(1− 2Φ/c2) 0
0 0 0 −r2(1− 2Φ/c2)































. (43)

What we want to find out is how the angles (θx, θy) of the ray change, as the photon travels along
its path, when the varying gravitational potential is present. The path of the unperturbed, radial
ray is set by 0= ds2 ≃ dη2 − dr2, therefore for the radial incoming ray

dr
dη
= −1 . (44)

gµν is defined such thatgµνgνα = δαµ and so we now compute the affine connections.
We want to findd2η/dp2 so we setµ = 0 in Eq. (39) so we write:

ẍ0
+ Γ

0
νσ ẋν ẋσ = 0 , (45)
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non-zero affine connections haveµ = ρ = 0:

Γ
0
νσ =

1
2

g0 0 {gν 0,σ + g0 σ,ν − gνσ,0
}

. (46)

We can read off the value ofg00 from Eq. (43)

g00
=

1
g00
=

1
R2

(

1+ 2Φ/c2
) (47)

We will now compute onlyΓ0
00, Γ

0
01, Γ

0
02, Γ

0
03, Γ

0
11, Γ

0
22, Γ

0
33, because we know that all others

must be zero. We keep this to zero order inΦ.
Γ

0
00

Γ
0
00 =

1
2R2

(

1−
2Φ
c2

)

{

g00,0 + g00,0 − g00,0
}

(48)

⇒ Γ0
00 =

1
2R2

(

1−
2Φ
c2

) {

∂

∂η

(

R2
(

1+ 2Φ/c2
))

}

(49)

⇒ Γ0
00 =

1
2R2

∂
(

R2
)

∂η
=

1
2R2

2R
∂R
∂η
=

1
R
∂R
∂η

(50)

Γ
0
01

Γ
0
01 =

1
2R2

(

1−
2Φ
c2

)

{

g00,1 + g01,0 − g01,0
}

(51)

⇒ Γ0
01 =

1
2R2

(

1−
2Φ
c2

) {

∂

∂r

(

R2
(

1+ 2Φ/c2
))

}

(52)

⇒ Γ0
01 =

1
2R2

(

1−
2Φ
c2

) {

∂

∂r

(

R2
)

}

=
R2

2R2

{

∂

∂r
(1)

}

= 0 (53)

Γ
0
02

Γ
0
02 =

1
2R2

(

1−
2Φ
c2

)

{

g00,2 + g02,0 − g02,0
}

(54)

⇒ Γ0
02 =

1
2R2

(

1−
2Φ
c2

) {

∂

∂θx

(

R2 (1)
)

}

= 0 (55)

Γ
0
03

Γ
0
03 =

1
2R2

(

1−
2Φ
c2

)

{

g00,3
}

=
1

2R2

{

∂

∂θy

(

R2 (1)
)

}

= 0 (56)

Γ
0
11

Γ
0
11 =

1
2R2

{

−g11,0
}

=
−1
2R2

{

∂

∂η

(

−R2
)

}

(57)
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⇒ Γ0
11 =

1
2R2

∂
(

R2
)

∂η
=

1
2R2

2R
∂R
∂η
=

1
R
∂R
∂η

(58)

Γ
0
22

Γ
0
22 =

1
2R2

{

−g22,0
}

=
−1
2R2

{

∂

∂η

(

−R2r2
)

}

(59)

⇒ Γ0
22 =

r2

2R2

∂
(

R2
)

∂η
=

r2

R
∂R
∂η

(60)

Γ
0
33

Γ
0
33 =

1
2R2

{

−g33,0
}

=
−1
2R2

{

∂

∂η

(

−R2r2
)

}

(61)

⇒ Γ0
33 =

r2

2R2

∂
(

R2
)

∂η
=

r2

R
∂R
∂η

(62)

So we return to Eq. (45) which can now be written as

ẍ0
+ Γ

0
νσ ẋν ẋσ = ẍ0

+ Γ
0
00ẋ0ẋ0

+ Γ
0
11ẋ1ẋ1

+ Γ
0
22ẋ2ẋ2

+ Γ
0
33ẋ3ẋ3

= 0 (63)

⇒ ẍ0
+

1
R
∂R
∂η

ẋ0ẋ0
+

1
R
∂R
∂η

ẋ1ẋ1
+

r2

R
∂R
∂η

ẋ2ẋ2
+

r2

R
∂R
∂η

ẋ3ẋ3
= 0 (64)

⇒
d2η

dp2
+

1
R
∂R
∂η

(

dη
dp

)2

+
1
R
∂R
∂η

(

dr
dp

)2

+
r2

R
∂R
∂η

(

dθx
dp

)2

+
r2

R
∂R
∂η

(

dθy
dp

)2

= 0 (65)

⇒
d2η

dp2
= −

1
R
∂R
∂η















(

dη
dp

)2

+

(

dr
dp

)2

+ r2

(

dθx
dp

)2

+ r2

(

dθy
dp

)2














(66)

Now, from Eq. (44) we see that

dr
dp
=

dr
dη

dη
dp
= (−1)

dη
dp
, (67)

so to first order we have

d2η

dp2
= −

1
R
∂R
∂η















(

dη
dp

)2

+

(

dη
dp

)2














= −
2
R
∂R
∂η

(

dη
dp

)2

= −
2
R

dR
dp

dη
dp
. (68)

Therefore by choosing units ofp appropriately, we find that

dη
dp
= −

1
R2
. (69)

Now we will look at theµ = 2 cases in Eq. (39):

ẍ2
+ Γ

2
νσ ẋν ẋσ = 0 , (70)
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non-zero affine connections haveµ = ρ = 2:

Γ
2
νσ =

1
2

g2 2 {gν 2,σ + g2 σ,ν − gνσ,2
}

. (71)

We can read off the value ofg22 from Eq. (43)

g22
=

1
g22
=

−1
R2r2

(

1− 2Φ/c2
) (72)

We will now computeΓ2
00, Γ

2
02, Γ

2
22, Γ

2
23, Γ

2
21, Γ

2
11, Γ

2
33, (we know that all others must be zero) to

first order4.

Γ
2
00

Γ
2
00 =

{

−1
2R2r2

(

1− 2Φ/c2
)

} {

−R2 2
c2

∂Φ

∂θx

}

=
1

r2c2

∂Φ

∂θx
(73)

Γ
2
02

Γ
2
02 =

{

−1
2R2r2

(

1− 2Φ/c2
)

}



















d
(

R2
)

dη

(

−r2

(

1−
2Φ
c2

))



















(74)

⇒ Γ2
02 =

{

−1
2R2r2

}{

−2Rr2
dR
dη

}

=
1
R

dR
dη

(75)

Γ
2
22

Γ
2
22 =

{

−1
2R2r2

(

1− 2Φ/c2
)

} {

−R2r2

(

−
2
c2

dΦ
dθx

)}

= −
∂Φ

∂θx

1
c2

(76)

Γ
2
23

Γ
2
23 =

{

−1
2R2r2

(

1− 2Φ/c2
)

} {

R2r2 2
c2

dΦ
dθy

}

= −
∂Φ

∂θx

1
c2

(77)

Γ
2
21

Γ
2
21 =

{

−1
2R2r2

(

1− 2Φ/c2
)

} {

∂

∂r

(

−R2r2

(

1−
2Φ
c2

))}

(78)

⇒ Γ2
21 =

{

−1
2R2r2

} {

−2R2r
(

1− 2Φ/c2
)

− R2r2

(

−
2
c2

)

∂Φ

∂r
)

}

(79)

⇒ Γ2
21 =

1
r

(

1− 2Φ/c2
)

−
1
c2

∂Φ

∂r
(80)

Γ
2
11

Γ
2
11 =

{

−1
2R2r2

(

1− 2Φ/c2
)

} {

−
2R2

c2

∂Φ

∂θx

}

=
1

c2r2

∂Φ

∂θx
(81)

4To zero order inΦ as before
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Γ
2
33

Γ
2
33 =

{

−1
2R2r2

(

1− 2Φ/c2
)

} {

2R2

c2r2

∂Φ

∂θx

}

= −
1
c2

∂Φ

∂θx
(82)

So we return to Eq. (70) which can now be written as

ẍ2
+ Γ

2
00ẋ0ẋ0

+ 2Γ2
02ẋ0ẋ2

+ Γ
2
22ẋ2ẋ2

+ 2Γ2
23ẋ2ẋ3

+ 2Γ2
21ẋ2ẋ1

+ Γ
2
11ẋ1ẋ1

+ Γ
2
33ẋ3ẋ3

= 0 (83)

⇒ θ̈x +
1

r2c2
∂Φ
∂θx

(

dη
dp

)2
+

2
R

dR
dη

dη
dp

dθx
dp −

∂Φ
∂θy

1
c2

(

dθx
dp

)2
− ∂Φ
∂θx

2
c2

dθx
dp

dθy
dp

+

(

2
r

(

1− 2Φ
c2

)

− 1
c2
∂Φ
∂r

)

dr
dp

dθx
dp +

1
c2r2

∂Φ
∂θx

(

dr
dp

)2
− 1

c2
∂Φ
∂θx

(

dθy
dp

)2
= 0

(84)

Note that the factor of 2 arises in front ofΓ2
02, Γ

2
23 andΓ2

21 due to the fact that we must include
e.g.Γ2

02 andΓ2
20. Keeping to first order inΦ, this reduces to

θ̈x +
1

r2c2

∂Φ

∂θx

(

dη
dp

)2

+
2
R

dR
dη

dη
dp

dθx
dp
+

2
r

dr
dp

dθx
dp
+

1
c2r2

∂Φ

∂θx

(

dr
dp

)2

= 0 (85)

⇒ θ̈x +
1

r2c2

∂Φ

∂θx

(

1
R2

)2

+
2
R

dR
dη

dη
dp

dθx
dp
+

2
r

dr
dp

dθx
dp
+

1
c2r2

∂Φ

∂θx

(

−
1
R2

)2

= 0 (86)

⇒ θ̈x +
2

r2c2R4

∂Φ

∂θx
+

2
R

dR
dp

dθx
dp
+

2
r

dr
dp

dθx
dp
= 0 (87)

Now we want to change from̈θx to d2θx
dη2 :

d2θx

dη2
=

d
dη

(

dθx
dη

)

=
dp
dη

d
dp

(

dp
dη

dθx
dp

)

=

(

dp
dη

)2 d2θx

dp2
+

dp
dη

dθx
dp

d
dp

(

dp
dη

)

(88)

and we can use the fact that

dr
dp
=

dr
dη

dη
dp
= −

dη
dp

(89)

to give

d2θx

dη2
= R4d2θx

dp2
+ R2dθx

dp
2R

dR
dp

(90)

So substituting from Eq. (87) gives

d2θx

dη2
= R4

(

−
2

r2c2R4

∂Φ

∂θx
−

2
R

dR
dp

dθx
dp
−

2
r

dr
dp

dθx
dp

)

+ 2R3dθx
dp

dR
dp

(91)

⇒
d2θx

dη2
= −

2
r2c2

∂Φ

∂θx
− 2R3dR

dp
dθx
dp
−

2R4

r
dr
dp

dθx
dp
+ 2R3dθx

dp
dR
dp

(92)

⇒
d2θx

dη2
= −

2
r2c2

∂Φ

∂θx
−

2R4

r
dr
dp

dθx
dp

(93)
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⇒
d2θx

dη2
+

2R4

r
dr
dη

dη
dp

dθx
dη

dη
dp
= −

2
r2c2

∂Φ

∂θx
(94)

⇒
d2θx

dη2
+

2R4

r
(−1)

1
R2

dθx
dη

1
R2
= −

2
r2c2

∂Φ

∂θx
(95)

d2θx

dη2
−

2
r

dθx
dη
= −

2
r2c2

∂Φ

∂θx
(96)

You will often see this result expressed in terms of the comoving transverse distance,X =
Skθx. We start by expressinġX andẌ:

Ẋ = Ṡkθx + Skθ̇x (97)

Ẍ = S̈kθx + Ṡkθ̇x + Ṡkθ̇x + Skθ̈x = S̈kθx + 2Ṡkθ̇x + Skθ̈x (98)

Recall the definition ofSk,

Sk(r) =



















sinr (k = 1)
sinhr (k = −1)

r (k = 0) .
(99)

Flat Case
We will now consider the flat case. In this caseSk = r and soṠk = ṙ = −1/R2, and

S̈k = r̈ =
dη
dp

d
dη

(ṙ) =
1
R2

d
dη

(

−
1
R2

)

=
1
R2

(

2R−3 dr
dη

)

=
2
R5

dR
dη
. (100)

In this case we can writėX andẌ as:

Ẋ = Ṡkθx + Skθ̇x = −
θx

R2
+ r θ̇x = −

X
rR2
+ r θ̇x (101)

⇒ θ̇x =
Ẋ
r
+

X
r2R2

(102)

Ẍ = S̈kθx + 2Ṡkθ̇x + Skθ̈x =
2
R5

dR
dη
θx −

2
R2
θ̇x + r θ̈x =

2
R5

dR
dη

X
r
−

2
R2
θ̇x + r θ̈x (103)

⇒ θ̈x =
Ẍ
r
+

2
rR2
θ̇x −

2
r2R5

dR
dη

X (104)

Now we substitute foṙθx from Eq. (102):

⇒ θ̈x =
Ẍ
r
+

2
rR2

(

Ẋ
r
+

X
r2R2

)

−
2

r2R5

dR
dη

X (105)

⇒ θ̈x =
Ẍ
r
+

2Ẋ
r2R2

+
2X

r3R4
−

2
r2R5

dR
dη

X (106)

Now returning to Eq. (87), we can use Eq. (102) and Eq. (106) tore-write it as:
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Ẍ
r
+

2Ẋ
r2R2

+
2X

r3R4
−

2
r2R5

dR
dη

X +
2

r2c2R4

∂Φ

∂θx
+

2
R

Ṙ

(

Ẋ
r
+

X
r2R2

)

+
2
r

ṙ

(

Ẋ
r
+

X
r2R2

)

= 0 (107)

⇒
Ẍ
r
+

(

2
r2R2

+
2
rR

Ṙ+
2
r2

ṙ

)

Ẋ +

(

−
2

r2R5

dR
dη
+

2
r3R4

+
2

r2R3
Ṙ+

2
r3R2

ṙ

)

X = −
2

r2c2R4

∂Φ

∂θx
(108)

=
Ẍ
r
+

(

2
r2R2

+
2
rR

dR
dη

1
R2
+

2
r2

(

−
1
R2

))

Ẋ +

(

−
2

r2R5

dR
dη
+

2
r3R4

+
2

r2R3

dR
dη

1
R2
+

2
r3R2

(

−
1
R2

))

X (109)

⇒ Ẍ +
2
R

dR
dη

1
R2

Ẋ = −
2

rc2R4

∂Φ

∂θx
(110)

Now we use the fact that:

d2X
dp2
=

d
dp

dX
dp
=

dη
dp

d
dη

(

dX
dη

dη
dp

)

=
1
R2

d
dη

(

dX
dη

1
R2

)

(111)

⇒
d2X
dp2
=

1
R2

(

d2X
dη2

1
R2
+

dX
dη

d
dη

(

1
R2

))

=
1
R4

d2X
dη2
+

1
R2

dX
dη

(

−2R−3dR
dη

)

(112)

Lastly, we return to Eq. (110), substitutingθ̈x

1
R4

d2X
dη2
−

2
R5

dX
dη

dR
dη
+

2
R3

dR
dη

1
R2

dX
dη
= −

2
rc2R4

∂Φ

∂θx
(113)

⇒
d2X
dη2
= −

2
c2r
∂Φ

∂θx
(114)

Finally this allows us to write the result for the flat case:

d2X
dη2
= −

2
c2
∇⊥Φ . (115)

where∇⊥ =
(

d
dX,

d
dY

)

.

B Appendix

B.1 Derivation of the deflection angle from the Euler-Lagrange Equation

A more compact way to derive the deflection angle is to use the Euler-Lagrange equation (again
a dot denotesd/dp):

∂L2

∂xµ
−

d
dp

(

∂L2

∂ẋµ

)

= 0 (116)

We are free to chooseL2 in the Euler-Lagrange equation and we set it to be equal to (ds/dp)2,

L2
= R2(η)

{(

1+
2Φ
c2

)

η̇2 −

(

1−
2Φ
c2

)

[

ṙ2
+ S2

k

(

θ̇2x + θ̇
2
y

)]

}

, (117)

and where we definexµ = (η, r, θx, θy). We now calculate Eq. (116) for the different values ofµ.
These are calculated to zero order inΦ.
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µ = 0

∂L2

∂η
−

d
dp

(

∂L2

∂η̇

)

= 0 (118)

⇒ 2R
dR
dη

{(

1+
2Φ
c2

)

η̇2 −

(

1−
2Φ
c2

)

[

ṙ2
+ S2

k

(

θ̇2x + θ̇
2
y

)]

}

−
d

dp

[

R22η̇
]

= 0 (119)

For photons we know thatds2
= 0 thereforeL2

= 0 and so the term
{(

1+
2Φ
c2

)

η̇2 −

(

1−
2Φ
c2

)

[

ṙ2
+ S2

k

(

θ̇2x + θ̇
2
y

)]

}

= 0 . (120)

Therefore we can write

−
d

dp

[

R22η̇
]

= 0 (121)

⇒ R2η̇ = constant (122)

⇒
dη
dp
=

1
R2

by choice of suitable units of p. (123)

µ = 1

∂L2

∂r
−

d
dp

(

∂L2

∂ṙ

)

= 0 (124)

To zeroth order, for an incoming, radial ray we need only use the fact thatds2
= 0 to give

straightforwardly
0 = R2

[

dη2 − dr2
]

, (125)

⇒
dr
dη
= −1 , (126)

⇒ ṙ =
dr
dp
=

dr
dη

dη
dp
=

(−1)
R2
. (127)

µ = 2

∂L2

∂θx
−

d
dp

(

∂L2

∂θ̇x

)

= 0 (128)

⇒ R2η̇2 2
c2

∂Φ

∂θx
+

2R2

c2

∂Φ

∂θx

[

ṙ2
+ S2

k(r)
(

θ̇x
2
+ θ̇y

2)]
−

d
dp

(

−R2S2
k2θ̇x

(

1−
2Φ
c2

))

= 0 (129)

Ignoring terms∂Φ
∂θx

(

θ̇x
2
+ θ̇y

2)

andθ̇x
(

−2Φ
c2

)

as they are 2nd order, we now write

⇒ R2η̇2 2
c2

∂Φ

∂θx
+

2R2

c2

∂Φ

∂θx
ṙ2 −

d
dp

(

−R2S2
k2θ̇x

)

= 0 (130)



B APPENDIX 19

Substituting in from Eq. (123) and Eq. (127) we get

R2 1
R4

2
c2

∂Φ

∂θx
+

2R2

c2

∂Φ

∂θx

1
R4
+

d
dp

(

2R2S2
kθ̇x

)

= 0 (131)

⇒
2

c2R2

∂Φ

∂θx
+

2
c2R2

∂Φ

∂θx
+ 2

d
dp

(

R2S2
kθ̇x

)

= 0 (132)

⇒
4

c2R2

∂Φ

∂θx
= −2

d
dp

(

R2S2
kθ̇x

)

(133)

⇒ R2 d
dp

(

R2S2
kθ̇x

)

= −
2
c2

∂Φ

∂θx
(134)

We now want an expression ford2X/dη2, whereX = Skθx is the comoving transverse distance.
We start by expressinġX:

Ẋ = Ṡkθx + Skθ̇x (135)

Recall the definition ofSk,

Sk(r) =



















sinr (k = 1)
sinhr (k = −1)

r (k = 0) .
(136)

Flat Case
Firstly we will consider the flat case. In this caseSk = r and soṠk = ṙ = −1/R2. Therefore
Eq. (135) becomes

Ẋ =
θx

R2
+ r θ̇x =

−X
rR2
+ r θ̇x (137)

Now we can substitute foṙθx in Eq. (134):

R2 d
dp

(

R2r2

[

Ẋ
r
+

X
r2R2

])

= −
2
c2

∂Φ

∂θx
(138)

Now we want an expression for d/dp:

d
dp
=

dη
dp

d
dη
=

1
R2

d
dη

(139)

⇒
R2

R2

d
dη

(

R2r2

[

1
r

1
R2

dX
dη
+

X
r2R2

])

= −
2
c2

∂Φ

∂θx
(140)

⇒
d
dη

(

r
dX
dη
+ X

)

= −
2
c2

∂Φ

∂θx
(141)

⇒
dr
dη

dx
dη
+ r

d2X
dη2
+

dX
dη
= −

2
c2

∂Φ

∂θx
(142)

Recall that we learnt in Eq. (126) thatdr
dη = −1, therefore

d2X
dη2
= −

2
c2r
∂Φ

∂θx
(143)



B APPENDIX 20

Finally this allows us to write the result for the flat case:

d2X
dη2
= −

2
c2
∇⊥Φ . (144)

where∇⊥ =
(

d
dX,

d
dY

)

.

General Case
Now we will look at the General case, firstly by finding an expression forṠk:

Sk(r) =



















sinr
sinhr

r ,
(145)

⇒ Ṡk(r) =



















cosr ṙ
coshr ṙ

ṙ
=































(

1− sin2 r
)

1
2 ṙ

(

1+ sinh2 r
)

1
2 ṙ

ṙ

=































(

1− s2
k

)
1
2 ṙ

(

1+ s2
k

)
1
2 ṙ

ṙ

=

(

1− kS2
k

)
1
2 ṙ (146)

⇒ Ṡk(r) = −

(

1− kS2
k

)
1
2

R2
. (147)

We will substitute into Eq. (134) and then in to Eq. (135).

Ẋ = Ṡkθx + Skθ̇x (148)

⇒ Ẋ = −

(

1− kS2
k

)
1
2

R2
θx + Skθ̇x (149)

⇒ Ẋ = −
X

SkR2

(

1− kS2
k

)
1
2
+ Skθ̇x (150)

⇒ θ̇x =
Ẋ
Sk
+

(

1− kS2
k

)
1
2 X

R2S2
k

(151)

Now we substitute this expression forθ̇x, and that ford/dp from Eq. (139) into Eq. (134):

d
dη

(

R2S2
k

[

dX
dp

1
Sk
+

(

1− kS2
k

)
1
2 X

R2S2
k

])

= −
2
c2

∂Φ

∂θx
(152)

⇒
d
dη

(

Sk
dX
dη
+ X

(

1− kS2
k

)
1
2

)

= −
2
c2

∂Φ

∂θx
(153)

⇒
dSk

dη
dX
dη
+ Sk

d2X
dη2
+

(

1− kS2
k

)
1
2 dX

dη
+

1
2

X
(

1− kS2
k

)− 1
2

(

−2kSk
dSk

dη

)

= −
2
c2

∂Φ

∂θx
(154)

⇒
dp
dη

dSk

dp
dX
dη
+ Sk

d2X
dη2
+

(

1− kS2
k

)
1
2 dX

dη
−

kSkX
(

1− kS2
k

)
1
2

dp
dη

dSk

dp
= −

2
c2

∂Φ

∂θx
(155)
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Now substituting in fordSk

dp from Eq. (147)

R2























−

(

1− kS2
k

)
1
2

R2























dX
dη
+ Sk

d2X
dη2
+

(

1− kS2
k

)
1
2 dX

dη
−

kSkX
(

1− kS2
k

)
1
2

R2























−

(

1− kS2
k

)
1
2

R2























= −
2
c2

∂Φ

∂θx

(156)

⇒ −
(

1− kS2
k

)
1
2 dX

dη
+ Sk

d2X
dη2
+

(

1− kS2
k

)
1
2 dX

dη
+

kSkX
(

1− kS2
k

)
1
2

(

1− kS2
k

)
1
2

= −
2
c2

∂Φ

∂θx
(157)

⇒ Sk
d2X
dη2
+ kSkX = −

2
c2

∂Φ

∂θx
(158)

which leads us to the result for the general case:

d2X
dη2
+ kX = −

2
c2
∇⊥Φ , (159)

where∇⊥ =
(

d
dX,

d
dY

)

.


