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1 INTRODUCTION TO LENSING THEORY 1

Figure 1:The bullet cluster. The mass map (dark matter) is shown ig,kdnd the xray is shown in
purple, both on top of the optical image. The dark matter nepldeen made using gravitational lensing
mass reconstruction - a unique way to probe dark matter. #ousee that the xray gas has interacted
when the two clusters have passed through each other, vakilmajority of the mass of the 2 clusters
has not interacted, and have passed without a collisiors iSt@vidence for collisionless dark matter.

1 Introduction to Lensing Theory

Tidal gravitational fields cause differential deflectioright rays. This means that the size and
shape of their projection on the sky are changed. In somes ¢hsaleflection can be so strong
that luminousarcsor Einstein ringsare observed. And in extreme cases light rays passing close
to a sufficiently massive body can be bent so strongly thatiptelrays can reach the observer.
This means that multiple images of the same object are obdeeach in the direction that a
ray has arrived. (See Kochanek (2004) for more detail)

Einstein rings, arcs, and multiple images are all effecssed aStrongGravitational Lens-
ing. Weaker gravitational effects occur more often, howedthough these weak distortions
are small and can hardly be noticed in an individual image nit distortion averaged over an
area of sky can be detected. These distortion effects diéetkLensing can be used to give
us statistical properties of the matter distribution betwas and the lensed source.

In a third Lensing régime —Micro-Lensing — magnificationaflistant source can occur.
Micro-Lensing can be thought of as a version of Strong Lemngihere the image separation is
too small to be resolved. Multiple images are formed buttheparations are below the limiting
resolution of our observations and this causes the sourappgear magnified. Micro-lensing
occurs for sufficiently small lens masses (such as a stat)fcarsufficiently distant sources and
lenses. This magnification effect is sometimes referredsta & cosmic telescope”. This is
because it lets us observe objects which would otherwisedfaint or distant to observe. (See
Wambsganss (2006) for further detail)

Whether Strong, Weak or Micro-Lensing effects are seen migpen the the size of the
lensing potentiglwhich we will meet shortly.
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Figure 2:Arcs caused by Gravitational Lensing (Bartelmann, 2006).

1.1 Applications of Gravitational Lensing

Gravitational Lensing is a tool which is used by observatl@osmologists. There are two main
areas which this tool can be applied: 1) probing dark matidr2 probing the geometry of the
universe.

1. Gravitational Lensing depends only on the projected 2Bsisstribution of the lens and
not on whether the matter is baryonic matter or dark mattearkDnatter can thus be
investigated using this method as the lens is independdabwvhosity and composition.

2. Gravitational Lensing not only tells us about the lensibgect, but about the space that
the light ray has travelled through to reach us from its seuf@osmological parameters
including the Hubble constant, the cosmological constadtthe density parameter of
the universe can all be constrained through lensing.

2 Measurements of Shapes and Shear

There are different ways to measure the shape of an objeetnigthod described here is the
one set out in Kaiser, Squires & Broadhurst (1995) and Sdené?2006). ~
In order to define the ellipticity of an object, we must firstide the centre of the image,

J d?01(0)al1(6)]10

0= (1)
J a2 1(6)all ()]
wherel (0) is the brightness distribution of the image, an@) is a weight function.
We next define the tensor sécond brightness moments
d?6 1(0)qi[1 ()1(6i — 6:)(6; — 6
.:f @)ai[1(0)1(6: — 6i)( J), e, )

! [0 1))

The trace ofQ describes the size of the image, and the traceless partygsvée ellipticity
information.
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Figure 3: Shape of image ellipses for a circular source,nmgeof y; againsty,. A plot of e
againste, would look quite similar(Schneider, 2006)

From Eq. (2), two complex ellipticities can be defined:

Q11 -Qn+2Qy . Q11— Qo+ 21Q1
X = y €= (3)

Qu+ Qe Qu+ Qo+ 2(Q11Q22 - Qiz)%

Figure 3 shows the shape of image ellipses for a circularcegun terms of their two
ellipticity componentsy; andy:.

To transform between the source and image ellipticitiesfoHowing relation can be used
(Seitz & Schneider, 1997)

<9 jf <1:
(9 — X~ 29 + ng* . E(S) B 1-gxe |g| = (4)
2 _ ) =
o e Lo g > 1.

whereg = g(2) = 22 is called theeduced shear

1-«(Z

In the weak lensing régime (< 1,|y| < 1), the reduced shefll) < 1 and Eq. 4 reduces
to (whereeis ellipticity defined either ag or ¢€)
€ =€e>+2g. (5)

If we assume that the sources are randomly orientated tleeexpectation value of the
source ellipticities will vanish and we can write:

(e =0. (6)

Taking the average of Eq. 5 we see that:

(€)y=0+2q), (7)

and if these sources are in small enough area of sky, we camadbat the light from each of
these galaxies experiences the same shear , and so we nowitean w

e
yrax@="3. ®
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Note the factor of 2 here for this definition of ellipticity.

2.1 The Principles of Weak Gravitational Lensing
2.1.1 Light Deflection

In the weak lensing limit we can write the metric as

ds = (1 + i—?)czdtz - (1 - Zc—cf) RY(t) [dr2 + sﬁ(r)dﬁﬂ , (9)

where @ is the peculiar gravitational potential and the requiretrfen a weak field is that
|D| < .

For weak fields we use Eqg. (9) as our metric and defor@ormal timein place of the usual
time coordinate. Conformal time is defined by

cdt
This allows us to re-write Eq. (9) more simply:
20 20
d< = R(t) {(1 + F) dn® - (1 - ?) |dr? + SZ(r) (e + d9§)]} . (11)
We can now write the metric tensor for the weakly perturbedHl&RW metric as
1+2d/c? 0 0 0
0 -(1-20/c?) 0 0
ROl o 0 -r2(1-20/c) 0 (12)
0 0 0 —r2(1-2d/c)

The most compact way to derive the deflection angle is usiad:tiier-Lagrange equation.
Please see Appendix B for the full derivation. This allowsagrite the result:

d?X 2
d_772 = —?qu) . (13)

whereV, = (%( %)

The integral of—‘é%‘ along the path gives us thetal deflection angle

2 B
a=5 fA Vv, dda . (14)

In the cases we are interested in, the deflection angle issmeayl. So we can make a small
angle approximation (known as Born’s approximation), thatdeflection angle is the same if
we integrated not along the deflected ray, but alongutierturbeday.
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Figure 4:Light deflection by a point mass. The unperturbed ray passesasM at impact parameter
b and is deflected by angte (Narayan & Bartelmann, 1996).

2.1.2 Deflection Angle of a Point Mass

To illustrate the above situation, we will now consider tledlection angle of a point mass M
along thez axis (See Figure 4). The impact parametgrjs the closest approach distance,
and most of the deflection occurs withhz ~ +b of the closest approach. The (Newtonian)
gravitational potential of the lens is

p--SM___GM (15)

r _(b2 + )2

We now calculate an expression o ®@

GMb

V. ob,2) = ——, (16)
(b? + 22)2
and substitute this into Eq. (14) to give us another expoedsir the deflection angle
. 2 4GM 2
a':§fVLCDdZ:W:BRS, (17)

whereR; is the Schwarzschild radius of the point mass. This allowts sy that the deflection
angle is just twice the inverse of the impact parameter itswiithe Schwarzschild radius. Note
that this deflection angle calculated using General Reftis exactly twice the value of the
angle calculated with Newtonian physics.

2.1.3 The Lens Equation

Figure 5 shows the source plane and the image plane of théajiawal lens system. (Here,
and for the following section, please now refer to NarayanatBimann (1996))0 is used as
coordinates for the image(s) afdor the source(s). They are related by Eq. (18)

DyB = Ds# — Dystt , (18)

Depending on how ellipticity has been defined, you will sethinliterature that sometimesx~ (€') is used.
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Figure 5:Diagram showing the angles and distances between the ebsiens plane, and source plane
(Bartelmann & Schneider, 2001).

whereDy, Dgs and Dy are the angular diameter distances between the observéemsdens
and source, and observer and source respecfively.

We now define theeduced deflection angler and define it to be

. 19
S (19)
This allows us to write the simplens equatior{or ray-tracing equation):

B=0-a. (20)

2.2 Mapping between the Source and the Image Plane

Thelocal imaging properties of the lens mapping between the sourderenimage plane are
described by the Jacobian matrif, (See Figure 6)

B da
A=—o=T-= (21)

A is also known as thamplification matrix A is symmetric and we can decompose it into
an isotropic and an anisotropic term as follows.

o 1-« 0 Y1 —Y2
ﬂ.,_[ A 1_KH_W 71] 22)

°Note that, in generaDgys # Ds — Dq because these are angular diameter distances.
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Figure 6:lllustration of how the Jacobian relates the source andntizgé (Bartelmann, 2006)

The first term is the isotropic expansion expansion terns (gihe convergenéehat we
met earlier in the section) and the second term isstiearterm. An illustration of the effects

of each of these is shown in Figure 7.
The amplification matrix can also be written in terms of comgats of the lensing potential

as follows,

Aij = 6 — 0i0jp , (23)

whereg;; is the kronecker delta. We can break this down into the dialamd off-diagonal part
as follows:

1 1
ﬂij = (5”‘ - [582905” + (aiajgo - E(Sijazgo)] = (5”‘ - [Kéij + ’yij] . (24)

Using the trace ofA and equating Egs. (22) and (23) lead us to the following:

1
=3 (p11 - ¢22) (25)
Y2 = P12 = @21, (26)

1
K= 2 (P11 + ¢22) - (27)

The effects of gravitational lensing on a circular soure@esdrown in Figure 7.

3 From Shear to Convergence - Making 2D Mass Maps

In this notation, we can expresandy as follows

1
k= =0%, (28)
2
3The termConvergenceomes from light deflection in empty space. Do remember thairactice, this can
often be an expansion term.




4 E AND B MODES 8

Convergence alone

T

() =

Source

Convergence + Shear

Figure 7: There are two basic types of distortion in gravitationalsieg. The convergence which is
isotropic, and the shear which is anisotropic (Narayan &&arann, 1996)

Now we can writey as (Brown et al., 2003)

Yij = [ :Z; _)ZZ ] = 0i0jp — %52805”‘ : (29)
Using this equation, we perform the operatié; to Eq. (29):
amm:a%%—%¥¢:%¥¥¢:¥K (30)
so we can write the following relation fat
K = 07200y + C, (31)

wherec is a constant of integration.
Using the Fourier Transform Relations below, kappa can leeilzded easily using the shear.

Fourier Transform Relations
o = il , (32)
& =7, (33)
_ 1
azz—ﬁ. (34)

4 E and B modes

The scalar gravitational potential should only produce kftae shear signal. The existence
of any significant curl component should be treated as a sydie shear error. We can split
the shear (or the convergence) into two modes, one whichuresathe divergence, and one
which measures the curl. We call tliisand B mode decompositionith the E mode being the
allowed curl-free component and the B mode being the sysiemar] component. Figure 8
shows the E modes generated by over-densities (top leftuaddr-densities (top right). The
bottom panels show the two curl modes which are not creatéarayitational Lensing.

You will notice that the B modes are a“®tation of the E modes. So to test for systematics
(B modes) we can rotate the data by 4hd repeat the same analysis. Anything which is a B
mode will now show up as a signal.
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Figure 8:The top panel shows allowed E modes created by Gravitatiograding. The bottom panel
shows B modes which are not allowed by a scalar gravitatippgéntial. (Van Waerbeke & Mellier,
2003).

5 Power Spectra and Correlation

The E and B modeower spectrare related ta; | andxg | as follows,

(kg ?)
E E,
= , 35
«I 7 N4AIn| (35)
(kg |1
B B,
= . 36
«I 7 N4AIn| (36)

We then define the E and B moderrelationsas the inverse fast fourier transform of these
guantities.
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A Appendix

A.1 Derivation of the deflection angle from the Geodesic Equ#on

The geodesic equation from General Relativity governs tbedline x* (1 = 0,1,2,3) of a
particle. It is written as follows:
2
d XM + rﬂ d_)eld_xr = O s
dp " dpdp
where p is an affine parametét,, is theaffine connectionwhich can be written in terms of the

metric tensog,, as
1 agvp 8gpcr agm
B — ZgHe —
B = 59 {axcr T T ow [ (38)

Or, equivalently, in alternative notation:

(37)

LT RK =0 (39)

pjo- = %gup {ng,O' + Qooy — gVO’,p} . (40)

Note that a dot denotelyd p throughout this section.
For weak fields we use Eqg. (9) as our metric and defor@ormal timein place of the usual
time coordinate. Conformal time is defined by

cdt
This allows us to re-write Eq. (9) more simply:
20 20
d< = R(t) {(1 + F) dn® — (1 - ?) |dr? + S¥(r) (dé? + d@f,)]} . (42)
We can now write the metric tensor for the weakly perturbedfl&RW metric as
1+ 20/c? 0 0 0
0 -(1-20/c?) 0 0
ROl o 0 —r(1-20/Q) 0 (43)
0 0 0 —r2(1-2d/c?)

What we want to find out is how the angle&g,@,) of the ray change, as the photon travels along
its path, when the varying gravitational potential is pres&he path of the unperturbed, radial
ray is set by 0= ds* ~ dn? — dr?, therefore for the radial incoming ray

ar _

dp

g is defined such tha,,g"* = ¢j and so we now compute the affine connections.
We want to findd?;/dp? so we sel: = 0 in Eq. (39) so we write:

-1, (44)

X +T0 X% =0, (45)
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non-zero affine connections have- p = 0:

1
Fga' = Ego O{gv 0,00 + gO oA gva',O} . (46)

We can read off the value gf, from Eq. (43)

" 0w  R(1+20/3) 47

g

We will now compute only9,, T3, 19, I35, 19, 19,,I'3,, because we know that all others
must be zero. We keep this to zero ordedin

T
1 20
rgo = R2 (1 - g) {9000 + Gooo — Yoo} (48)
1 20\ ( 0
0o _ 2
10(R) 1 _ 4R 14R
0 _ _ oz
=To0= 5 ~ 2oy - Ron (50)
T
1 20
To; = R (1 - g) {Qoo1 + Goro — Joro} (51)
1 20\ (0
0o _ 2
1 20\ (0 R2 (0
Io
1 20
Ig, = R (1 - g) {9oo2 + G020 — Jo20} (54)
1 20 0
:roz—(l——){—Rzl}:o 55
27 2R\" ) 1a6y (R ) (59)
Tos
1 20 1 0
0 _ — —
Tos = ﬁ( - g) {Qoos} = R {6_6)), (R2 (1))} =0 (56)
FO

19, = 5 (010l = 5 { 5 (-R)} 57)
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R?
1 9(F) 1,00 14R

=T =5 o7 2R oy Ron
Iy
19, = g (-Geao) = 575 {57 (-R7)}
2 0(R)  r2gR
227 2R2 9ng R on
I

1 -1 (0
I3 = 2 {~Os30} = R {5_77 (—Rzrz)}

_ 2 9(R) _raR
BT2R ap  Rop
So we return to Eq. (45) which can now be written as

0 +T0 XX = %0+ Toxx® + T XK + T, 3252 + T9,5°% = 0

10R 10R. r20R. r2oR
0+ =300 + xtxt 2% + ——xC =
% * Ron Rap X TRa X Ry 0
_ & 10R dy)? , LoRr(dr 2+f@ % r29R (d6y\*
dp2 Ran \dp Ran dp Ron\dp R@n dp) ~

dZ  10R((dp\® [(dr\® L (d&)®
:ﬁ-‘ﬁa—n{(d—p)+(d—p)”(d—p)”

Now, from Eq. (44) we see that

dr drdn
dp  dpdp

)

dn
= (-1 dp’

so to first order we have

&y _ 10R[(dy\" (dn\| _ 20R(dy)*_ 2dRdy
dpz Ry |\dp dp "~ Ran\dp) ~ Rdpdp’

Therefore by choosing units gfappropriately, we find that

— == (69)

Now we will look at theu = 2 cases in Eq. (39):

o2 2 ey _
X¥+Iy xX'x” =0,

13

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)

(70)



A APPENDIX 14

non-zero affine connections have- p = 2:

1
[l = 56 *(0r 20 + Q20w = G2} - (71)
We can read off the value @b, from Eq. (43)
7= 1 (72)

T 0w RrZ(1-20/3)

We will now computel 3, I'3,, 15,155, 15,2, T2, (we know that all others must be zero) to
first ordef.

IS0
-1 2 0D 1 0®
2 _ R\ -
Voo = {2R2r2 (1- 2c1>/c2)}{ Rzc2 aex} r2c 96y (73)
IG
_ d(R?
o, = - ®) 2(1-22 (74)
2R?r2 (1 - 2®/c?) dn c?
2 _ | 1 [ 5pedR|_ 1dR
=12, = { Srers (17 2R ar | = Ry (75)
2
2 _ -1 _Re2(_29%)|_ 01
Iz = {2R2r2 (1-2d/c?) Rr c2dd, )|~ 96, c? (76)
I
-1 2 do oD 1
2 _ 2= \V_ 77 =
o {2R2r2 (1- 2c1>/c2)} {Rzr c? dey} 30y 2 (77)
I3
-1 9 20
2 _ — |_R?%r?2|1 - 2=
o= {2R2r2(1 - 2(D/c2)} {ar ( Rr (l 2 ))} (78)
-1 2\ 0D
=I5 = {W} {—2R2r (1 - 2(1)/02) - Rr? (‘g) E)} (79)
1 1 6d
2 _ 2
:>r21_F(1—2q>/c)—§E (80)
7]
-1 2R? 9@ 1 00
2 _ _ ——\__- ==
= {2R2r2(1 -~ 2(1)/02)}{ c? aex} c2r2 96y (81)

4To zero order ind as before
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2
Iﬂ33

%= 1 R o0\ __100 (82)
B\ 2R2r2(1-20/c?) [ | c2r2 g6, ¢ 9o,

So we return to Eq. (70) which can now be written as

2+ T25050 4 2125052 1+ T2,505€ + 21253563 + 22,5850 + 255 + T250¢ =0 (83)

. 2
= Oy + = ‘9@(@) +

100 d_Rd_n%_@;(%)Z o0 2 doy doy
r2c2 90y \dp

2
Rdnp dp dp 6y ¢ \ dp 80y c2 dp dp

(84)
2 20\ _ 190\ drde , 1 90 (dr)\?_ 190 (d6)2 _
+F1-B)-2R) G Su (G -ER(g) =0
Note that the factor of 2 arises in front B},, I's, andI'5, due to the fact that we must include
e.g.I'3, andI3,. Keeping to first order i, this reduces to

1 90 (dp\® 2dRdyde, 2drdg, 1 8D (dr\*
it \dap) *Rasapds* rapds* w(ap <0 ©
. 160 (1) 2dRdpdd, 2drde, 1 9®( 1)°
=i+ g (%) * R apds * rapas * | ) 0 ©9
. 2 00 2dRdd, 2drdo,
:>HX+r2c—2R4(9_9x+ﬁd_pd_p+Fd_pd_p_ (87)
Now we want to change fromy to ‘(’jz,f;:
@6, _ d (do|_dpd (dpdo) _(dp\d®s, dpde,d (dp) oo
dp2  dp\dy/) dypdp\dpdp/ \dp) dpz  dypdpdpldy
and we can use the fact that
dr drdp dp
dp~ drdp dp (59)
to give
d?6y d?6y dé.._dR
a2 - R i +R2d—sza) (90)
So substituting from Eq. (87) gives
Poy (2 00 2dRdG, _2drdby) o 0d6, IR o)
d2 r2c?Ré 99,  Rdpdp rdpdp dpdp
d?6, 2 0D dRd6, 2R* dr doy dg, dR
=GP " Peas, dpdp  r dpdp > dpdp %2

d26, 2 00 2R*dr do,

= Gp " @, r dpdp ©9
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d?%, 2R'drdpdécdy 2 9D
T dp T dpdpdydp i an, ©9

d%e, 2R 1do, 1 2 00

@t rar ™ o, (93)

2
d@x_g%:_ia_(b (96)
dp?  rdp r2c? 0y

You will often see this result expressed in terms of the canptransverse distanc, =
SkOx. We start by expressing andX:

X = Skgx + Skéx (97)
X = gkgx + S-kéx + S-kéx + Skéx = S"kex + ZSkéx + Skéx (98)
Recall the definition of,
sinr (k=1)
Sk(r) =3 sinhr (k= -1) (99)
r (k=0).
Flat Case .
We will now consider the flat case. In this cé&e=r and soS, = f = -1/R?, and
. . dpd . 1d 1 1 odr 2 dR
= = — = —— ——:—ZR—:——_ 1
Se=T=Gpan den( R2) R2( dn) R d7 (100)

In this case we can writ¥ andX as:

L . 0 . X

= =+ réy (101)
. XX
=0y = ? + W (102)
X = Skex + ZSKQX + Skex = Ed—nex - @9)( +r6y = Ed—n— - @9)( + Iy (103)
. X 2 . 2 dR
= 0Oy = ?+@9X_Wd_nx (104)

Now we substitute foé, from Eq. (102):

. X 2 (X X 2 dR
AN DA DA P 1
== rRZ(r " r2R2) r2Re dy (105)
. X 2Xx 2x 2 dR
Oy = — - —X 106
T TR TR T R dn (106)

Now returning to Eq. (87), we can use Eq. (102) and Eq. (1063orite it as:
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>'<+2>'<+2x 2 dR .2 0 2.(X X +2f>'<+x _0 (107)
rr2RRBRY r2RedpT r2c?RAag R O\r o r2R) r \r o reRe)
X (2 2. 2. 2 dR 2 2 . 2. 2 0D

:>T+(W+ﬁR+ r_zr)x+(_r2R5d_n+r3R4+ r2R3R+ r3R2r)X:_—r202R46_0x (108)

:§+(i 2dR1 2( 1))X+( 2 dR 2 2 dR1 2 ( 1))X (109)

7R " RA; R 2\ R TRy PR PR A R PR\ R
. 2dR1 . 2 0D
= X+ ﬁd—n@ = _—I’C2R4(9_9X (110)
Now we use the fact that:
X _ ddX_dpd (dXdp)_1d (dxX1 a1
dp?  dpdp dpdp\dpdp/ Redyp\dpR?
d?X 1(d?X1 dXd {1 1d’°X 1dX dR
= G5 " rlorR e ) e R () @D
Lastly, we return to Eq. (110), substitutifig
1dX_ 2dxdR 2dR1dX_ 2 do 113
Rédp2 Redpdp R3dpR2dp  rc2R* 96y
2
d<X _ 2 0D (114)

:> —_— —_————
dn? C2r 96y
Finally this allows us to write the result for the flat case:

57 = V0. (115)

whereVv | = (%( diY)

B Appendix

B.1 Derivation of the deflection angle from the Euler-Lagrarge Equation

A more compact way to derive the deflection angle is to use therfE.agrange equation (again
a dot denoted/dp):

oLz d (aL?
We are free to choode in the Euler-Lagrange equation and we set it to be equal $ai)?,
20) . 20\ 1. PR
L2 = R(n) {(1 + ?)nz - (1 - F) |#2+SE (62 + 93)]} , (117)

and where we defing’ = (1, r, 6, 6,). We now calculate Eq. (116) for the different valueg:.of
These are calculated to zero orderin
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u=0

oLz d (GLZ) (118)

an  dp\ an
drR 20 20 . CI
:>2Rd—{(1+ ) (1——)[r +S2 (62 +9)]}—d—p[R22n]_O (119)
For photons we know thats® = 0 thereforel.? = 0 and so the term
- (1-= . 12
{(1+C )n (1 C)[r + SE (62 +9)]} 0 (120)

Therefore we can write

—dip |Re27| =0 (121)
= R%) = constant (122)
= S—Z éz by choice of suitable units of p. (123)
u=1
Ga_l_rz - dip(al_z) (124)

To zeroth order, for an incoming, radial ray we need only imsefact thatds® = 0 to give
straightforwardly

0=FRe|[dy - dr?, (125)

S dr -1, (126)
dn
dr dr dn (-1)
R TRE TR AR (127)
p=2
oLz d 6L2
— - — 128

5200 2R28d>[

d : 20
U 30, " " s0, + SE(r) (Hx + 0, )] (—RZSEZQX(l -~ —)) =0 (129)

dp c?
Ignoring termsi® (é,f + éyz) andé, (—2—2’) as they are 2nd order, we now write

,200 2RI,

~R2S226,) = 1
n T 89Xr dp( Sg26,) =0 (130)
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Substituting in from Eq. (123) and Eq. (127) we get

1200 2RPHD 1 d

R200, & 06, dp
2 00 2 00 d

(2RPS26,) = 0 (131)

- - = . 2 A _
~ ZREG6; | ROy de(RZSKQX) 0 (132)
4 9D d )
= 2R, ‘Zd—p(R25k9x) (133)
d 2 2 00

We now want an expression fdfX/dn?, whereX = S,6, is the comoving transverse distance.
We start by expressing:

X = Skgx + Skéx (135)
Recall the definition of5,
sinr (k=1)
Sk(r) =% sinhr  (k=-1) (136)
r (k=0).

Flat Case

Firstly we will consider the flat case. In this caSg= r and soSk = f = —-1/R%. Therefore
Eq. (135) becomes

C6 - =X .
X:@+r0X:@+r9X (137)
Now we can substitute fat, in Eq. (134):
d X X 2 0D
RY (R2|2 4 2 ||= 228 138
dp ' r TR C2 90y (138)

Now we want an expression for d/dp:

d dyd 1d

dp~ dpdy ~ ROy .
= ;d% (Rer[%éz—;( + r2_>|(:22D = —C—Zzg—gz (140)
:%(rz—;(+x):—c—zzg—z (141)
2
:ST;S—;(+r3—;2<+3—;<:—C—222—:; (142)
Recall that we learnt in Eq. (126) th§§7t = —1, therefore
X __ 2 o0 143

dn2 ~  c?r a6,
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Finally this allows us to write the result for the flat case:

X 2
G =@V (144)

whereVv | = (%( %)

General Case '
Now we will look at the General case, firstly by finding an exgsien forSy:

sinr
Sk(r) =4 sinhr (145)
r,
1 ‘ .
_ cosr f (1-sirr)*s (1-<)°t .
= Sy(r) =1 coshri = (1+ Smhzr)% i =1 (1 %)%f = (1-ksp)* (146)
r : .
r f
. (1-ksp)?
= S =~ - (147)
We will substitute into Eq. (134) and then in to Eq. (135).
X = S0« + Siby (148)
(1-ksP)?
= X = ——R Oy + Skex (149)
X = - (1-KkS)? + Sud 150
= __SkRZ(_ 2)* + Siby (150)
. X a3 X
= 0y = S_k + (1 - kSk) Rz—si (151)
Now we substitute this expression g and that ford/d p from Eq. (139) into Eq. (134):
d ,[dX 1 A X\ 200
a (RZS [ oS, +(1-kSp)? stz]) ~Za0. (152)
d dX 2 00
—— +X(1-kS%) | =-=— 1
dn(Skdn+ ( s)) G0, (153)
_, dScdX d2X AidX 1 - dS| 2 @
=5 & Skd > +(1-kS}) o éx(1—ksk) —2kS—— o Ry (154)

_, dpdscdX & A3dX  KSX dpdSc 240
+ S +(1-kS _toX o S 155
~ Uy dpdy T ¥aR ( ) dp (1_ ksﬁ)i dp dp  C?0bx (135)
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Now substituting in for‘fj—sg from Eq. (147)

1-kS? : 2 1 1-kS? :
Rz(——( = k) ]Z—X+Sk¥+(l—k8§)zz—x— KSX le(—( = k) ]——C—Zzg%)
n n n (1_ kSE)Z X
(156)
(1-ks)’
pdX . d?X 1dx  kSX(1-KSF)° 290
—(1-kS?)? == —= +(1-kS2)* == = —— 157
= —(1-kSP) i +skd772 +(1-ksP) i (1—k8§)% 37, (157)
d?2X 2 00
= Skd_nz + kSkx = —?a—ex (158)
which leads us to the result for the general case:
d?X 2
d_;72 + kX = —gvlq) 5 (159)

whereV, = (%( %)



