

VISTA and its capabilities Jim Emerson

VISTA Principal Investigator Queen Mary University of London

What is VISTA for?

Multicolour wide field imaging

- Find objects for 8-metre telescopes to study in detail
- Do science from surveys
- In Southern hemisphere
- In near-IR (Z,Y,J,H,Ks)
- In Visible (subject to funding of DarkCam)

Survey Speed

Surveys need to be FAST: Needs <u>Depth</u> & <u>Area</u>

- Depth: large primary
- Depth: good image quality & small pixels
- Depth: Good site
- Depth: high throughput
- Area: large FOV without impacting the above

VISTA Basics

Sky depth (A)

- 4m primary mirror
- Optics design + focal plane with 0.34"/pixel VIRGO detectors (HgCdTe 0.84-2.5µm) from Raytheon
- ESO's Cerro Paranal Observatory
- Good QE even at short IR wavelengths => ZYJHKs

Sky area (Ω)

- 1.67 degree diam IR FOV-> sky area at focal plane
- Current IR detectors not buttable
 - At least not buttable enough to make it worthwhile
- 4x4 sparse array of 2x2k pixel VIRGOs -> 0.6 deg² 'pawprint' => 1.5 deg² tile (next slide) ^{8 Nov 2005} ROE Workshop Queen Mary 4

Near-IR Bands

& Pawprint

Tiling - Infilling the Pawprints

After 3x2=6 steps 1.5 x 1.0 deg² sky is (almost) uniformly tiled (by 2 pixels) except at edges

8 Nov 2005

6

8 Nov 2005

ROE Workshop

7

VISTA cf WFCAM Galaxy

Exposure Time Calculator

to be delivered to ESO

VISTA IR Camera: Exposure Time Calculator

Input Flux Distribution

Power law:		
Type:	f_lambda 🗘	
alpha:	-2.0	
CBlackbody:		
Temperature:	10000 1	Celvin
Single line:		
Wavelength:	1500.0 r	um (in the range [900.0-2500.0] nm)
Flux:	1.0e-16 e	rgs/s/cm2
Width:	1.00 r	ım
Object Magnitude:	Ovega: Val	ue: 18.00 (per square arcsec for extended sources)
	Uriux: vai	(ergs/s/cm2)
Spatial Distributi	on:	
Aperture:	2.0 arcs	ec (diameter)
Point Source	e	
CExtended So	urce	

Instrument Setup

Filter:] 🗘

Sky Conditions

Brightness:		mag/arcsec2 [default dark sky: J = 15.6 H = 14.4 Ks = 13.2]
Airmass:	1.20	sec z
Seeing:	0.80	arcsec
Extinction:	0.05	mag/unit airmass

Observing Setup

Detector on-chip integrati	ion (DIT)	10.0	seconds
Object exposure time:	60.0	seconds	
OS/N Ratio:	20.0		
Cobserving Strategy:			
Exposure coadds (Ndit)):	6	
Exposure loops (Nexp)	1		
Microstepping pattern	(NxM):	1x1 🛟	
Jitter pattern (Njitte	er):	1	
Number of pointings (1	Npaw):	6	

Expected Performance

Filter	Adopted Sky Brightness (mag/square arcsec)	Number of exposures	15 min/5-s limit
Ζ	18.5	15	23.8
Y	17.2	15	22.5
J	16	90	22.2
Н	14.1	90	21.0
K _s	13	90	19.8

•Assuming: 1.2 airmass,

- •median seeing 0.66" at 0.5µm,
- •photometry in 1.6 " diameter software aperture.

8 Nov 2005

How fast will it survey?

- Active optics runs "concurrently", no overhead.
- Overheads on a tile depend on adopted combination of filter changes, jittering, tiling,
- Typical observing minute: 6 x (integrate 10s + readout 1s), coadd + save, jitter move 3s, guider lock 1s, repeat => 70 seconds
- Exposure Time Calculator also calculates survey efficiency for given observing strategy. (ignoring time in telescope slews to next observed field).

8 Nov 2005

(UK-centric) ground based wide field survey facilities

- In North (Hawaii & La Palma)
 - IR: WFCAM on 3.8m UKIRT, 0.2 deg
 - Visible: WFC on 2.5m INT, 0.3 deg

- In South (ESO)
 - IR: VIRCAM on 3.9m VISTA, 0.6 deg
 - Visible: OmegaCam on 2.6m VST, 1 deg
 - [Visible: darkCAM on 3.9m VISTA, 2 deg]

Public Surveys

- ESO will allocate 75% of its VISTA time for Large Scale Public Surveys (Chilean time?)
- Public Surveys (usually by a Consortium)
- Remaining 25% ESO time for Private Surveys (PIs)
- Time allocated by specialised ESO Panel(s) + OPC

What might VISTA do?

(example only, ~ 400 clear nights)

Survey name	Area (deg ²)	Y	J	Н	K _s	Clear nights
		(Vega, 5σ)				(exc. overheads)
Very deep	15		23.8	22.5	22.0	55
Deep	100		22.8	21.5	21.0	57
Wide (high-b)	3000	22.0	21.2*	20.0	19.5	100
Wide (plane + MCs)	1500	21.5	20.5*	19.5	19.0	45
Atlas	20000		20.2		18.2	150

8 Nov 2005

Camera + Project scientist

Enclosure

Inside Enclosure

Telescope

M1 Cell

Polishing M1

Coating Plant

M2 Hexapod Unit

Mounting VIRCAM

Mounting VIRCAM -2

Timescales (subject to change)

- Discussion meeting at Queen Mary 19/20/21 Dec
- ESO: 1st CfP for VISTA Public Surveys Jan 06
- ESO: VISTA Public Surveys Panel Jun 06?
- Telescope ready for camera July 06
- Camera commissioned Aug 06
- ESO: VISTA Public Surveys to OPC Oct 06
- System Integrated Nov 06
- Commissioned & Accepted Jan 07
- ESO: Science Verification- Feb 07?
- ESO: CfP for other VISTA surveys Mar 07?
- ESO: VISTA Public Surveys start Mar07?
- ESO: VISTA open time starts Sep07 (period 81)? ^{8 Nov 2005} ROE Workshop Queen Mary

25

In Closing....

- VISTA on track for commissioning 4th quarter 2006. Schedule anticipated to be met
- Performance anticipated within specification (+ZY)
- Expect Public Survey Proposals to be sought early in January 2006
- Expect general time to be offered in ESO Period 81 beginning September 2007
- Will be world's leading facility for wide-area NIR surveys, (few deg² to hemisphere) for ~ a decade

8 Nov 2005

