KMOS: A multi-object deployable-IFU spectrometer for the ESO VLT

Ray Sharples Durham University For the KMOS consortium

Ralf Bender, Richard Bennett, Keith Burch, Paul Carter, Mark Casali, Paul Clark, Robert Content, Ric Davies, Roger Davies, Marc Dubbeldam, Gert Finger, Natascha Förster Schreiber, Reinhard Genzel, Achim Hess, Markus Kissler-Patiig, Ken Laidlaw, Matt Lehnert, Ian Lewis, Alan Moorwood, Bernard Muschielok, Jeff Pirard, Phil Rees, Josef Richter, David Robertson, Ian Robson, Suzie Ramsay-Howat, Roberto Saglia, Mathias Tecza, Naranjan Thatte, Stephen Todd, Bob Wall, Michael Wegner

Consortium Members

- University of Durham
- University of Oxford
- Astronomy Technology Centre
- Universitäts-Sternwarte München
- MPI für Extraterrestrische Physik
- European Southern Observatory

Top Level Scientific Drivers

- Investigate the physical processes which drive galaxy formation and evolution over redshift range 1<z<10.
- Map the variations in star formation histories, spatially resolved star-formation properties, and merger rates
- Obtain dynamical masses of well-defined samples of galaxies across a wide range of environments at a series of progressively earlier epochs

I: The Masses and Growth of Galaxies

SCUBA galaxy SMM J14011+0252 (z=2.565) SPIFFI spectra of the central 2 arcsec of J1c indicates SMM J14011+0252 has been forming stars for several hundred Myrs

Panoramic Near-Infrared Astronomy

II: Extremely High-Redshift Galaxies and Re-ionisation

Abell 1835 IR1916 - the Farthest Galaxy - Seen in the Near-Infrared (VLT ANTU + ISAAC)

ESO PR Photo 05a/04 (1 March 2004)

© European Southern Observator

Abell 1835 IR1916 : I-band dropout gravitational arc

Fig. 1.— Optical spectra of $z \gtrsim 5.8$ quasars observed with Keck/ESI, in the observed frame. The spectra have been smoothed to $4\overline{A}$ pixel⁻¹, and have been normalized to the observed z hand flux. The spectrum of SDSS104-0125 has been taken from Pan et al. (2000). In each spectrum, the expected wavelengths of prominent emission lines, as well as the Lyman limit, are indicated by the dashed lines.

Gunn-Peterson trough in SDSS quasars (Becker et al 2001 AJ 122,2850)

Panoramic Near-Infrared Astronomy

II: Extremely High-Redshift Galaxies and Re-ionisation

Surface densities of Lyman-α emitters in cosmological simulations (Barton et al., 2004, ApJ 604, L1)

OS

WFPC-2 image of A2218 with arclets marked

Panoramic Near-Infrared Astronomy

III: Cluster/Group Formation and the Morphology-Density Relation

7` x 7` *I*-band image of the *z* = 2.2 radio galaxy MRC 1138-262 K-band images of clusters expected to lie at $z \sim 1$ detected in the LSS XMM survey 1`.5 x 1`.5 *K*-band image of a high-*z* X-rayabsorbed QSO showing fifteen EROs with *K* < 21 and *R* - *K* > 5.3

Panoramic Near-Infrared Astronomy

Multiplex advantage

Panoramic Near-Infrared Astronomy

Top Level Requirements

- Spatially-resolved (3-D) spectroscopy
- Multiplexed spectroscopic observations
- Observations across the J, H, and K infrared atmospheric windows
- Versatile capability to address new scientific problems

Science Requirements

Requirement	Baseline Design
Throughput (excl tel/atm/det)	J=20%, H=30%, K=30%
Sensitivity (0.6 arcsec seeing)	5σ 8hr: J=21.2, H=21.0, K=19.2
Wavelength coverage	1.0 to 2.45 μm
Spectral Resolution	R=3400,3800,3800 (J,H,K)
Number of IFUs	24
Extent of each IFU	2.8 x 2.8 sq. arc seconds
Spatial Sampling	0.2 arc seconds
Patrol field	7.2 arcmin diameter circle
Close packing of IFUs	≥3 within 1 sq arcmin
Closest approach of IFUs	≥3 pairs of IFUs separated by 6 arcsec

Panoramic Near-Infrared Astronomy

Systems Architecture

Panoramic Near-Infrared Astronomy

OS

Optical Design

Panoramic Near-Infrared Astronomy

Systems Architecture

Panoramic Near-Infrared Astronomy

OS

Arm movements

Panoramic Near-Infrared Astronomy

Simulations of the pick-offs

Science Case	Setup	No. Ol Assig N	pects. gned %
1. EROS-1 NTT 30 objects	1 2 Total	24 6 30	80 20 100
2. EROS-2 FDF 77 objects	1 2 3 Total	24 24 17 65	31 31 22 84
3. EROS-3 GOODS ACS 48 objects	1 2 3 Total	24 20 3 47	50 42 6 98
4. EROS-4 GOODS ACS 30 objects	1 2 3 Total	24 10 30	67 33 100
5. EDISCS CLUSTER 55 objects	1 2 3 Total	24 20 10 54	44 36 18 98

Panoramic Near-Infrared Astronomy

Pick-off Module

'Ring' Mirror

Calibration Sphere

Filter Wheels (6)

IFU Module (3)

IFU Module

- 8 pickoff subfields combined to produce single output slit; each subfield re-imaged on to 14x14 element image slicer
- Diamond-machined monolithic optics (AI) to eliminate thermal effects and minimize alignment errors
- All reflective, gold-coated, achromatic design
- Anamorphic magnification produces regular spatial sampling on sky (0.2 arcsec) with Nyquist sampling of spectra

Panoramic Near-Infrared Astronomy

IFU Production

1

 Plug & play installation into GNIRS • On-sky commissioning 5-8 April, 2004 • Throughput efficiencies:

Throughput compared to slit 0.9 0.8 ₹[‡] × monochromatic 0.7 ŢǾ 0 Mean in band X,J,H,K Global model fit 0.6 prediction from metrology 0.5 1.000 1.500 2.000 2.500 Wavelength (um)

74% (J) 82% (H)

Panoramic Near-Infrared Astronomy

89% (K)

IFU Mechanical Design

Panoramic Near-Infrared Astronomy

Spectrograph Module

- Modular spectrograph subsystems (3)
- Toroidal reflective collimator and 6-element transmissive achromatic camera
- 6-position grating wheel: optimized J,H,K gratings bands with options for a z-band grating and two lower resolution gratings

Each with 1 Hawaii-2RG 2048x2048 detector

Spectrograph Layout

Spectrograph Design

Panoramic Near-Infrared Astronomy

Spectrograph Performance

Window	Wavelength range for the window	Spectral range (no overlap)	Resolution
z†	0.80-1.05um	0.25um	3380
J	1.05um-1.37um	0.32um	3380
н	1.45um-1.85um	0.4um	3800
К	1.95um-2.5um	0.55um	3750
JH	1.05um-1.85um	0.80um	1500
НК	1.45um-2.55um	1.10um	1500

Panoramic Near-Infrared Astronomy

Hawaii-2RG Detector

Temperature Dependence of Quantum Efficiency of 2Kx2K arrays Hawaii-2RG MBE & Hawaii2 LPE

- Hawaii2 LPE QE drops with temperature
- Hawaii-2RG MBE
 QE does not
 dependent on
 temperature
- Science grade QE K-band: 0.88 H-band: 0.83 J-band: 0.80 [z-band: 0.80]

Panoramic Near-Infrared Astronomy

Status and Schedule

- Preliminary Design Review March 2006
- Final Design Review March 2007
- Preliminary Acceptance Europe March 2010
- Prelim Acceptance Chile September 2010

Panoramic Near-Infrared Astronomy

