XMM-2dF Wide Angle Serendipitous Survey

Jonathan Tedds (Leicester)

Mat Page (MSSL)

XMM-Newton Survey Science Centre

Introduction

- XMM-Newton X-ray serendipitous surveys XID program
- 2dF optical spectroscopic characterisation of X-ray sample
 - Provisional ID statistics
 - z-distribution
- Unique science examples: rare objects
 e.g. any BAL QSOs?
- Opt/IR imaging follow-up
 - 1XMM/SDSS/UKIDSS test case
- Summary

The XMM-Newton serendipitous sky survey

- XMM-Newton with EPIC cameras
 - large FOV
 - large throughput
 - excellent high energy response
- Every new XMM-Newton pointing discovers ~30-150 serendipitous X-ray sources.
- 700 pointings/year ⇒ about 50,000 new X-ray sources/year

Angular resolution worse than Chandra • depth limited by confusion ($f_x \sim 4 \ge 10^{-16}$, T ~ 100 ksec) But higher s/n X-ray spectra at medium/faint fluxes

SSC XID programme

- statistical identifications for the whole XMM-Newton \bullet serendipitous catalogue
- **Core programme: spectroscopic IDs** (1000 sources/sample): igodol
 - High b faint sample ($\sim 10^{-15}$ erg cm⁻² s⁻¹)
 - High b medium sample ($\sim 10^{-14}$ erg cm⁻² s⁻¹) => AXIS (PI Barcons) + 2dF
 - -> bulk of objects contributing to X-ray background are at fluxes ~ 10⁻¹⁴ : depth of XMM serendipitous survey
 - High b bright sample ($\sim 10^{-13}$ erg cm⁻² s⁻¹) => Della Ceca et al 04
 - <u>Galactic Plane Sample</u> ($\sim 7 \ 10^{-15} \text{ erg cm}^{-2} \text{ s}^{-1}$) => PI Motch
- **Imaging programme** (u,g',r',i',Z,H): a large number of XMM-Newton ۲

2df ID Motivation – Characterise X-ray Sky

- AXIS (PI Barcons, IFCA) making a major contribution towards characterising the XMM medium sample in North
- Striving for an unbiased survey with statistical completeness
- But 1000 sources with spectral IDs ambitious!
- Solution: 2dF at the AAT in South
 - Complement AXIS
 - Very high observing efficiency
 - simply aim for the maximum identification rate

What do we get?

How much have we observed?

- 27 pointings with 2dF
- 68 XMM fields including LSS fields some multiple exposures
- Typically 1hr exposures
 - **any** X-ray source with an optical counterpart that could be allocated a fibre
 - Prioritise according to X-opt offset
 - 1/2 of fields have WFC/WFI multiband opt imaging

In total > 3000 X-ray sources observed and reduced

- Identification stage almost complete and we have certainly beaten the barrier of 1000 sources brighter than $F_{0.5-4.5} > 10^{-14} \text{ erg cm}^{-2} \text{ s}^{-1}$
 - Opens up unique areas of parameter space

Distribution of 2dF fields on sky

ROE IR Surveys Workshop, 10th Nov 2005

Unique science example: Broad Absorption Line QSOs

- **3-5%** of optically selected QSOs (SDSS ~10-15%?)
- Virtually absent in previous X-ray surveys because of absorption
 - None in ROSAT surveys!
- But are there any which are *transmissive* enough to be picked up in current X-ray surveys?
 - Certainly will require a large survey to have a hope of detecting more than one or two
 - Not heavily obscured in the optical perfect area to be addressed by 2dF medium survey

Example BALQSOs found with 2dF

XMM: F_{0.5-4.5}=9.4x10⁻¹⁵ergs⁻¹cm⁻²

SURVEY SCIENCE CENTRE

Results: Broad absorption line QSOs

- ~10-20 BALQSOs found cf ~1000 QSOs
 - 1-2% of the X-ray QSO population
 - 1/3 the fraction found in past optical surveys
 - this is suprisingly large... but new SDSS result?
 - ~15% optical QSO population, 1.7<z<3.5 (Reichard et al 03)
- The X-ray selected ones will have the lowest X-ray absorption of the BALQSO population
 - Are their optical absorption lines typical of the optically selected population?
 - What are their X-ray column densities?
 - Homogeneous reprocessing of all 2dF XMM data completed
 - Current public pipeline
 - 2XMM test pipeline

ROE IR Surveys Workshop, 10th Nov 2005

with Silvia Mateos, Mike Watson

X-ray colour selection \rightarrow obscured source \rightarrow ID with NELG z=0.23

ROE IR Surveys Workshop, 10th Nov 2005

BLAGN

- What are their X-ray spectra? => XMM reprocessing complete >150 BLAGN spectra EPIC counts >200 e.g. stack, bin spectra - Fe line?
- What is the space density of z~4 QSOs in X-ray surveys do they decline at z
 > 2 in the same way that optical QSOs do?
- How common is X-ray absorption?
- Ly-alpha in optical red, relatively easy objects to identify spectroscopically, but fairly rare on the sky 2dF survey ideal
- WFC,ESO mags for some fields photo-z (Astrogrid VO tools), dropouts
- Supercosmos, Sloan correlations via AstroGrid, Vizier etc

Z=3.052 BLAGN

 $F_X = 5 \times 10^{-15}$ cgs, power law = 1.66, $N_H = 10^{20}$ Bj=22.46

broad Lyb, Lya/NV/SiII + weak abs, broad CII SiIV/OIV CIV [NIII] CIII]

with Pam Derry

Stacked BLAGN spectra

XID Imaging Programme

With McMahon, Yuan (IoA); Watson; Schwope (AIP) 80% IDs with INT WFC data

- multicolour optical data for 33/68 2dF XMM fields (WFC+ESO)
 - magnitudes, colours, morphology, redshifts
- 2 mag. deeper than SDSS (INT WFC $i' \approx 23^{m}$; SDSS $i' \approx 21^{m}$)
- *photometric* IDs for ~1500 XMM sources !

UKIDSS LAS and the XMM Serendipitous Catalogue

- Single UKIDSS Tile
 - 4 point mosaic
 - SV target L/T dwarf?
- XMM pointing on Abell 1750 cluster (redshift z=0.085)

ROE IR Surveys Workshop, 10th Nov 2005

UKIDSS LAS and the XMM Serendipitous Catalogue

- One 1XMM field 'by chance' overlapped with the UKIDSS LAS Science Verification observations
 - UKIDSS Target was a L/T dwarf
 - XMM target was Cluster Abell 1750 (z=0.075)
 - non-ideal XMM field but illustrative
- 50 sources with Fx>2x10-14cgs
- UKIDSS/SDSS Identification statistics
 - Search radius 5"; ~2sigma radius for 1XMM sources
 - 40 1XMM sources have ids in SDSS DR4 (id rate=80%)
 - Normal blank 'field' ID rate is 30% so maybe ids associated with cluster of galaxies
 - No 'new' UKIDSS LAS ids i.e. all SDSS blank fields were blank in LAS
 - 26 of SDSS ids have UKIDSS LAS detections (65%)

Conclusions:

LAS will provide YJHK photometry for 65% of 1XMM SDSS identifications

- 20% of all XMM sources in LAS
- 10% of all 2XMM sources will lie within LAS region(4000deg2) after 2yrs
 - Assuming 20% LAS ID rate
 - 2% of all XMM sources will have both SDSS and LAS photometry
 - 3000 sources from 2XMM catalogue

Summary

• 2dF ID >1000 sources brighter than $F_{0.5-4.5} > 10^{-14} \text{ erg cm}^{-2} \text{ s}^{-1}$

- Homogeneous X-ray data reprocessing completed
 - Current public pipeline + test 2XMM
- Characterise XRB source population
- Optical multiband imaging complete for 1/2 fields (WFC,ESO...)
 - Opt mag dropouts?
 - 2 mags deeper than SDSS
- Excellent statistical ID training sample
- XMM serendipitous survey = WIDE coverage!
 - Larger no of rare objects than deep, narrow surveys to date, e.g.
 - X-ray selected BAL QSOs => SDSS agreement?
 - High-z AGN

