Type Ia SN and Dust Extinction

Oct.26, 2007 "Decrypting the Universe Large Surveys for Cosmology" at ROE

Mamoru Doi

Institute of Astronomy School of Science Univ. of Tokyo

Naoki Yasuda, Tomoki Morokuma, Naohiro Takanashi, Kohichi Tokita, Yutaka Iha Saul Perlmutter, Chris Lidman, and Supernova Cosmology Project Team

Held in Edinburgh in June, 1991

Fig. 6. Mosaic CCD camera as of June 6, 1991, when 'first light' was taken. The camera was mounted on the prime focus of the Kiso Schmidt telescope. Two CCD chips were actually equipped. They can be seen inside the dewar window. Cylindrical dewars attached on both sides are used as liquid nitrogen tanks.

S.Okamura \rightarrow

1991 1kx1k CCDx16 1.05m Kiso Schmidt Te.

Dr. Maki Sekiguchi

1994 1kx1k CCDx40 Las Campanas 1m WHT 4.2m (UK-Jpn.) S. Miyazaki

2000 4kx2k CCDx10 8.2m Subaru

1999 2kx2k CCD x30 J. Gunn2.5m Sloan Digital Sky Survey

Suprime-Cam 12 (IAU) SNe / field SDSS-II SN survey 327 spectroscopicall confirmed SNe in 2005 - 2006

Contents

I. Measuring Expansion of the Universe with SNIa Basic methods

II. From Suprime-Cam to HyperSuprimeCam What we can expect

III. On-going improvements Dust extinction

I Measuring Expansion of the Universe with SNIa

Universe is accelerating! Perlmutter et al.1999

Riess et al. 1998, Schmidt et al. 1998

Type la Supernova

- Standard Candle (Luminosity~constant)
 →WD(@binary system) reaches
 Chandrasekar limit (~1.4solar mass)
 ⇔ Core collapse SNe Type II, Ib, Ic
- Large Luminosity (~whole galaxy)
 → measurable at cosmological distance

Standard Observing Method

- Wide-Field imaging
 - imaging with ~1months interval or "rolling"
 - \rightarrow find candidates
- Spectroscopy

confirmation of SN spectrum (⇔AGN, variable stars)

SN type and redshift determination

• follow-up photometry, color

light curve \rightarrow luminosity

K correction

evaluation of dust extinction of host galaxy

B-band Light curve of nearby SNIa

Luminotity of SNIa:

not exactly constant

brighter SNIa

→ larger time scale
 in light curve

(larger stretch factor)

Correction based on light

curve is possible.

intrinsic scatter ~ 15%

e.g. Phillips et al. 1993 Perlmutter et al. 1997 Hamuy et al. 1999

Consistent with $\Omega_{\Lambda} \sim 0.7 \quad \Omega_{M} \sim 0.3$

II. From Suprime-Cam to HyperSuprimeCam

SUBARU 8.2m 33 × 27 arcmin² Field of View the largest among 8-10m telescopes

Suprime-Cam@Subaru:

[~]20 times more effective than ACS@HST

Field of View : x100 integration time : $\times 1/5$ (Yasuda et al. 2004)

Least χ^2 fitting of Spectra

SN Rate Studies with SuprimeCam

SN Rate studies

SN rate with photometric classifications of SN types Poznanski et al. 2007 Oda et al. in prep. 2002 SXDF campaign → >~ 5 epochs, ~100SNe Light Curve Shape type I ⇔ type II (⇔AGN) Color Ia ⇔ Ib/Ic

Variable objects found in multi-epoch imaging of Suprime-Cam

Morokuma et al. submitted

Variable component only

→ HyperSuprime ~1000 variable objects / FoV spectroscopic follow-up with WFMOS, FMOS, ...

Hyper Suprime Cam $(\times \sim 10 \text{ SupC FoV})$

can find

~500 SNIa / night (0.5 <~ z <~ 1.5)

~5000 SNIa / 10 nights

← ~1 hour exposure / epoch

Hamamatsu CCD red sensitive

can follow

~50 SNIa / night

~500 SNIa / 10 nights

← ~8 hour exposure / epoch

Spectroscopy

bright targets

multi-fiber spectrograph (WFMOS) ~100 fibers/FoV

faint targets

with Adaptive Optics e.g. Melburne et al. 2006 HST including NIR photometry

→ large and well controlled sample (LC, color, host) rate measurements check evolution

III. On-going improvements

On-going surveys: 200-700 SNIa in several years

- \rightarrow systematic errors, high redshift(>0.8)
- SNIa as a Standard Candle

homogeneity

(host environment, progenitor) possible evolution

- Dust extinction due to host galaxy
- K-correction
 - different observed wavelengths \rightarrow correction
- accurate photometric zeropoints

Reddening law (normal galaxy)

Different Extinction Correction among different analysis code (MLCS2k2, SALT, SALT2, ...)

R_B~3.5 : Optimal?

 $\Leftrightarrow R_{\rm B} \sim 4.3 : MW$ 78 Nearby SNeIa B,V Altavilla et al. 2004

Light curve studies of nearby Type Ia Supernovae with a Multi-band Stretch method

N. Takanashi^{1*}, M. Doi¹ and N. Yasuda²

In prep.

New Light Curve Templates ← **stretch method** (Perlmutter et al. 1997)

Rest frame B - V

(B-V)₀=-0.12?

Color-Color : Consistent with MW dust extinction

For cosmological distance indicator SNela on E, S0 smallest scatter

Sample	relation	r.m.s. (mag)	Number
9A	$0.96 \times B_{s,f_{\star}}^{-1} - 2.51 \times (B-V)_{max} - 20.26$	0.48	104
9B	$0.98 imes B_{s,f.}^{-1} - 2.28 imes (B-V)_{max} - 19.95$	0.27	45
$9\mathrm{C}$	$1.09 \times B_{s,f}^{-1} - 1.78 \times (B-V)_{max} - 20.15$	0.33	28
9D	$0.99 imes B_{s.f.}^{-1} - 2.23 imes (B-V)_{max} - 20.10$	0.12	16
$9\mathrm{E}$	$1.25 imes B_{s.f.}^{-1} - 0.71 imes (B-V)_{max} - 20.40$	0.21	46
9A is all S	Ne Ia.		
9B is SNe 9C is SNe	Ia of $z > 0.02$. Ia hosted by E or S0 galaxies.	Blue	E, S0 host
9D is SNe Ia of $z > 0.02$ hosted by E or S0 galaxies.			
9E is "BV bluest"+"BV bluer" sample, which $-0.14 > (B - V)_{max} > -0.02$.			

Empirical color correction

Our next step \rightarrow SDSSII SNe

SDSS-II SN survey 327 spectroscopicall confirmed SNe in 2005 - 2006

Homogeneous Data set in 5 colors

"SDSS Standard Star Catalog for Stripe 82:Dawn of Industrial 1% Optical Photometry" Ivezic et al. 2007

SDSS SN survey 2005-2006

Spectroscopy for SDSS SNe →classified ~327 SNIa in 2005-2006 MDM 2.4m NOT 2.6m APO 3.5m NTT 3.6m KPNO 4m WHT 4.2m Subaru 8.2m HET 9.2m Keck 10m SALT 10m

SDSS SN spectra with Subaru(Yasuda et al.)

→ nearby SN Ia 2005-2006: 50 new SNIa Frieman et al. 2007, Sako et al. 2007

High-z Cluster surveys by SCP (2005-2006)

HST imaging (S.Perlmutter et al)219 orbitsSubaru spectroscopy (M.Doi et al.)14 nightsVLT spectroscopy (C.Lidman et al.)16 hours+DDTKeck spectroscopy (S.Perlmutter et al.)6 nights+

with cluster search/study teams RCS (Gladders, Yee et al.) RDCS (Rosati et al.) IRAC (Eisenhardt et al.) XMM (Mullis et al.)

RDCS 1252.9 @ z=1.23 (ISAAC and ACS) by C.Lidman

SNe Discoveries in HST Program

Efficiency to find SNe on ellipticals

higher ← clusters

Successfully 10 SNe found on ellipticals

SCP

SN Lightcurves

Example spectra with FOCAS

z=0.851

z=1.3

The Elliptical host Hubble Diagram

Example of E–only Hubble Diagram

7 SNe Ia from this program.

Another 13 SNe Ia at lower z from published works.

No extinction correction

Surprisingly small scatter

Blind analysis (we will not know the answer until we remove the blind).

Unfortunately HST/ACS is broken!

SCP

summary

HyperSuprime

can easily make a large(>1000) SN sample using just a few 10 nights ← SuprimeCam **OFollow-up spectroscopy** WFMOS, FMOS etc. for brighter SNe LGAO for fainter SNe **OPhotometric Studies** \rightarrow SN rate \rightarrow SNIa cosmology at z>~1 well selected/controlled sample (e.g. E host only) **ODust Extinction** ⇔intrinsic scatter of SNIa color a key to improve accuracy