

Direct Detection of Dark Matter

Alex Murphy

Dark Matter http://www.ph.ed.ac.uk/nuclear/darkmatter/ Nuclear astrophysics http://www.ph.ed.ac.uk/nuclear/

Where to begin...

General Interest Seminars OPEN LECTURE

Lord Crawford's Astronomy Library

Professor Owen Gingerich

Harvard University

5pm Thursday 25th October 2007

Main Lecture Theatre

Michael Swann Building The King's Buildings, University of Edinburgh

www.ph.ed.ac.uk/seminars

Coffee/Tea & Doughnuts will be served in the foyer from 4.45pm generation of the production of the pro

AXIOMATA rary SIVE LEGES MOTUS

[11]

Lex. L

Corpus anne perfererare in flatu fuo quiefeende vel movembe unifaunter in direction, nifi quatemus a viribus improffes cogitur flatum illum mutare.

PRojectilia perfeverant in motibus fuis nili quatenus a refiftentia actis retardantur & vi gravinaris impelluntur deorfium. Trochus, cujus partes colearendo perpetuo retrahunt fefe a motibus refulincis, non cellar rotari nili quatenus ab acte retardana. Majora auten Planetarum & Cometarum corpora morus fuos & progrefilvos & circulares in fpatiis minus refiftentibus factos confervant dintins.

Lex IL .

Mutationen natus propertionalem effo es matrici impreffa, & fieri feemedian lineam restant-pas wis illa imprimieur.

ICEL COMPOSITION.

riaddinir, ti corpusantea movebatur, motiaddinir, vel contrario fubdiccitur, vel obl-

nar, & cum co fecundum urrinfo; determinatio-

24 October 2007

Lox III

Royal Astronomical Society on Monday 26 November

Specialist Discussion Meeting on Dark Matter

Welcome: Alex Murphy

Chair: Wyn Evans

13:00 - 13:30 James Binney (Oxford):
13:30 - 13:50 Anne Green (Nottingham):
13:50 - 14:10 Mark Wilkinson (Leicester):
14:10 - 14:40 Dan Hooper (Fermilab):
14:40 - 15:00 Paula Chadwick (Durham):
15:00 - 15:30 Sergio Colafrancesco (Rome):

Tea/Coffee

Chair: Subir Sarkar

16:00 - 16:20 Hans Krauss (Oxford): 16:20 - 16:40 Nigel Smith (Chilton): 16:40 - 17:00 Neil Spooner (Sheffield): 17:00 - 17:20 Ben Morgan (Warwick): 17:20 - 17:30 Discussion Dark matter in the Galaxy Direct detection and the dark matter distribution Observable properties of dark matter Indirect signatures of dark matter HESS searches for dark matter annihilation in the Galaxy tbd

The future in cryogenic dark matter detection (EURECA)) tbd (ZEPLIN/ELIXIR) tbd (DRIFT/CYGNUS) Optimizing WIMP directional detectors

WIMP-like DM hypothesis...

- Earth should be passing through a halo of (probably) weakly interacting massive particles
- We would like direct evidence for the existence of these particles
- Search for their (rare) interactions with normal matter here on Earth.

How tough is this challenge?

Ellis et al. hep-th/0502001 10⁻⁵ 10⁻⁵ CMSSM, $tan\beta=10$, $\mu>0$ $\Sigma=64$ MeV CMSSM, tanβ=50, μ>0 Σ=64 MeV 10⁻⁶ 10⁻⁶ current projects 10-7 1 event/kg/month 10⁻⁸ σ (pb) event/tonne/day 10⁻⁹ future projects 10-10 event/tonne/month 10⁻¹¹ 10-11 10⁻¹² 10-12 400 800 1000 200 600 800 1000 0 200 400 600 m., (GeV) **CMSSM** Example m, (GeV)

Required sensitivity is ~10⁻⁷ - 10⁻¹⁰ pb

May not need to go all the way for discovery...

General Methodology

- Active target
- Wimp scatters off a nucleus of the detector
- That nucleus recoils and deposits KE in detector, generating Scintillation, lonisation and Phonons
- Time constants and ratios of signal types depend on incident particle type
 - Allows discrimination against e.g. γ-rays

Neutrons VERY HARD to discriminate against

What do we need to do...

- To cover lower reaches of parameter space...
 - The event rate is small AND the energy deposited is small
- Large scale detectors
 - target masses of tonne scale to provide count rate
 - Low background to allow signal to be seen
 - Remove intrinsic activity from detector
 - Remove external activity from surroundings
 - Reject γ , β
 - control/rejection of surface events
 - position sensitivity, segmentation, fiducialisation / self shielding
- Low (keV) energy threshold for nuclear recoil
 - The above, plus...
 - High gain
 - High efficiency

This is TOUGH!

Is this even feasible...?

- Is it possible to make a clean enough environment?
- Neutron production from
 - U/Th in detector material
 - U/Th in shielding material
 - U/Th in rock
 - µ spallation in detector material
 - μ spallation in shielding material
 - μ spallation in surrounding rock

→Deep underground

- \rightarrow Radiologically pure components
 - \rightarrow Additional shielding from environment

Where to search for WIMPs?

EU underground sites ApPEC Roadmap

Infrastructure	LNGS Gran Sasso	LSM Fréjus	LSC Canfranc	IUS Boulby	BNO Baksan	CUPP Pyhäsalmi
Year of completion	1987	1982	1986, 2005	1989	1977, 1987	1993 (2001)
Area (m ²)	13000	500	150+600	500+1000	550, 600	500-1000
Volume (m ³)	180000	3500	8000	3000	6400, 6500	100-10000
Access	Horizontal	Horizontal	Horizontal	Vertical	Horizontal	Slanted truck road
Depth (m.w.e.)	3700	4800	2450	2800	850, 4800	1050, 1444 up to 4060
Surface profile	Mountain	Mountain	Mountain	Flat	Mountain	Flat
Muon flux (m ⁻² day ⁻¹)	24	4	406	34	4320, 2.6	8.6 @ 4060m
Neutron flux (>1 MeV) (10 ⁻⁶ cm ⁻² s ⁻¹)	0(1)	0(1)	0(1)	0(1)	- , O(1)	?
Radon content (Bg/m ³)	O(100)	<i>O</i> (10)	O (100)	O(10)	O(100)	O(100)
Main past and present scientific activities	- DM - ββ - solar v - SN v - atmos. v - monopole - nuclear astrophysic S - CRs (μ) - LBL v's	Eighties: - Proton decay - atmos.v Now: - DM (Edelweiss) - ββ (NEMO, TGV)	- DM (IGEX- DM, ROSEBUD, ANAIS) - ββ (IGEX)	- DM (Zeplin I,II, III, DRIFT)	BUST: - solar v - SN v - atmos. v - CRs (μ) - monopo- les SAGE: - solar v	- CRs (test set-up)
Number of visiting scientists	700	100	50	30	55	15

Plus SNOlab, SUSEL/DUSEL, ...

Boulby, U.K. site 1100m, 2.8km water equiv. 10⁶ reduction in muon flux

Neutron shielding requirements

A combination of hydrocarbon, iron, and active veto...

1000

100

10

0.1

0.01

Basic 40cm Fe + 40cm CH passive shielding

With CH as

neutron veto

3

With neutron &

muon veto

+extra 20cmCH

2

muons Fe shield

muons CH shield

muons vessels

11/Th outer Fe

U/Th PMTs muons rock

U/Th vessels

U/Th rock

Detections techniques: Single channel

Ionisation Detectors

Targets: Ge, Si, CdTe ~Energy per e/h pair 1-5 eV NR energy collection eff. 10-30% Sensitivity (HEMT JFET, TES) < 1 keV IGEX (4 keV), HDMS, GENIUS (3.5 keV) Improve surface effects Improve volume effects Improve scaleability

Scintillators

Targets: NaI, Xe, Ar, Ne ~ Energy per photon ~15 eV NR energy collection eff. 1-3% Light gain 2-8 phe/keV Sensitivity (PMTs) ~1 keV ZEPLIN I (2 keV), NAIAD (4 keV) DAMA (2 keV), DEAP, CLEAN, XMASS (5 keV)

Bolometers

ohonon

Targets: Ge, Si, Al₂O₃, TeO₂ ~Energy per phonon ~meV NR energy col. eff. (th.) ~100% SMR (PVG (P20) ution keV (Improvestareshold V x-rays) ORTOTOVE (DOISE'), CUERTEASE (EMPERATOR)

scintillation

Single phase: Present status

DAMA <u>signal</u>

- Annual modulation
- 'controversial'
- LIBRA: Results promised 2008

 Threshold techniques very promising
 Picasso, COUPP

All hybrid techniques have >99% nuclear recoil discrimination at 10keV NR

The <u>key</u> question:

What's the best technology for scale up?

- Semiconductor or Noble Liquid
- EDELWEISS, CRESST, EURECA, CDMS, XENON, LUX, ZEPLIN, XMASS, ArDM, DEAP, WARP, CLEAN, SIGN...

Semiconductors

CDMS

- Phonons and Ionsisation
- 97 kg.d exposure Soudan (6xGe, 4xSi)
- 430 kg.d analysis ongoing (19xGe, 11xSi)
- 2x10⁻⁸ pb expected final run (1300kg.d)
- Upgrade path: SuperCDMS
 - Bigger detectors, more detectors
 - Cleaner components
 - Better shielding
 - 'Phase B/C' \rightarrow 150-1000kg scale system

Semiconductors

CRESST/EDELWEISS

- Scintillation/phonon, ionisation/phonon
- CaWO₄, Ge, Si
- 3kg.d, 6x 320g NTD, 2x 200g NbSi (2006)
- More data, 23x 320g NTD, 7x400g NbSi (2007)
- → EURECA, 100-1000 kg

24 October 2007

(Liquid) Noble Gas detectors

Gas	Single phase	Double phase
Xenon	ZEPLIN I, XMASS	ZEPLIN, XENON, XMASS
Argon	DEAP, CLEAN	WARP, ArDM
Neon	CLEAN	SIGN

noble gas interaction process

- Single phase scintillation
 - recombination occurs
 - singlet/triplet ratio 10:1

nuclear : electron

Double phase - ionisation/scintillation

ZEPENTIL

- Scintillation / Ionisation
- 7.2 kg fiducial target mass
- 0.55 p.e./keV (with field)

Two-phase Noble liquid method

F

- Use PMTs to observe prompt scintillation ("S1")
- Apply E-field: Extract a faction of the ionisation electrons
- Drift electrons through liquid
- Accelerate electrons through gas generating electroluminescence
- PMTs observe (depth) delayed electroluminescence ("S2")
- S2/S1 is different for an electron compared to a nuclear recoil

Gamma ray interaction

Neutron interaction

- Population due to radon-progeny events seen on walls
- 29 events seen, 28.6±4.3 expected
- 90% c.l. upper limit 10.4 n.r
 - → <u>6.6x10⁻⁷pb</u>

XENON 10

 22kg target mass, 15kg active

XENON

- 89 low b/g 1" PMTs in liquid and gas phase
 - 48 in gas, 41 in liquid
 - ~mm position reconstruction in x,y
- Deployment at LNGS
- Pulse tube cooling

XENON Results

- Blind analysis on 58.6 days
 - Still not published, ...controversial...
 - 50% n.r., 2-12 keV
 - 23 events in n.r. window
 - 10 events after all cuts
 - 6.8 expected from gamma leakage events
 - Yellin maximal gap analysis (single sided)
 - minimum at <u>4.5x10⁻⁸ pb</u>
- Future XENON 100
 - 100kg target mass
 - background assessments completed
- And/Or... LUX
 - ~100 kg target mass
 - Homestake

ZEPLINI

- High-Field, 2-Phase Xenon
 - Good light collection for scintillation
 - Slab geometry (35 mm drift height, D/h~10)
 - Photomultipliers immersed in liquid
- Better discrimination
 - 'Open plan' target, no extraction grids
 - High field operation (3-5 kV/cm)
 - Precision 3D position reconstruction
- Low background construction
 - Copper construction, low background Xe
 - 8kg fiducial mass
- 1st Science Run before Christmas?
- FP7 ELIXIR 1 tonne DS

Present status

- 'Canonical' halo model
- Spin independent interaction
- normalised to one nucleon

http://dmtools.berkeley.edu/ limitplots/Gaitskell/Mandic

Likely merger of groups for each technology as we 'approach' tonne-scale

E.g.

- CRESST & EDELWEISS → EURECA
- Untenable to have XENON 100 and LUX2 and ELIXIR

But, genuine benefit in having multiple technologies

Complementarity of targets

- Comparison of rates in LXe and LAr detectors
- Shows effect of A² and form factor

events/ keV for 1 ton-year

Conclusions

- This is a hugely competitive field, many groups
- We need to reach tonne-scale
 - Searches the required parameter space.
 - Even if signal seen before then, we need sufficient events
 - This <u>can</u> be done!
 - This <u>will</u> be done (in ~5-7 yrs)
- Finances and limited effort <u>requires</u> a merger of groups
- But not necessarily choice between technologies
 - confirm/explore signal
- Once a signal is found, we need...
 - Confirmation, energy spectra, directional detectors, more events, bigger scales still!

Roll on Direct Dark Matter Detection Astronomy!

Thanks to my DM colleagues

The second s

