Bright LAEs at z~9:

Constraints on the luminosity function from HizELS

David Sobral

P. Best, I. Smail, J. Geach, M. Cirasuolo, R. Ivison, K. Coppin, J. Kurk, M. Casali, G. Dalton Edinburgh, Durham, Heidelberg, Garching, Oxford

drss@roe.ac.uk

www.roe.ac.uk/~drss

Why high-z?

- Understand galaxy formation and evolution
- Really break degeneracies (and test) Models
- Find the "first galaxies"
- Important insight into the "early years"

What are we looking for?

- Extremely distant galaxies; probably the first ones to have formed.
- Population III signatures? Different IMF? "Different" Physics? Ages? SFRs? Dust? Fundamental properties?
- What are they like?
- Is there an optimal approach?

In practice...

- Various techniques ~10-100s of hours
- I) Narrow-band imaging infrared (Lyα!)
- 2) Deep broad-band photometry (Lyman-breaks!)
- 3) Spectroscopy & Blind spectroscopy (Lyα emission!)

(Very) Recent Progress

Most distant object, **z~8**.2

- GRBs (Tanvir et al. 2009)
- Lyman-break searches
- WFC3/HST "revolution"

- ~20-50 z>6 candidates in a few days
- Bouwens et al. 2009, Oesch et al. 2009
- McLure et al. 2009, Bunker et al. 2009, (n

UV luminosity function

- Strong decrease in M^{*}
- Steep faint end-slope...
- Implications for reionization?
- Observed not enough...?

• z~8?

• What about the NB Ly-α searches?

The NB Lyα Searches up to z~6

Deep ground-based NB searches

~Little Evolution 3<z<6

Samples ~small Cosmic variance Contaminants

Significant changes at z>6?

Can we go beyond z~8 and how much would (will) we learn?

- Highest-z galaxy spectroscopically confirmed z=6.96 (lye et al. 2006), most distant object z=8.2 (Tanvir et al. 2009)
- Most candidates come from pencil beam ultra-deep surveys and are too faint for detailed follow-up - so until a new generation of instruments/telescopes comes along we can't learn that much from them
- Despite that, can we really get to z~9 and beyond?
- Can larger area surveys pick very rare, brighter sources which we can follow-up in detail? HizELS!

HizELS: the High-z Emission Line Survey

- High-Redshift(z) Emission Line Survey
- Selecting Star-forming galaxies at z < 9
- Hα at z= 0.84, 1.48, 2.23 (Geach et al. 08, Sobral et al. 09a)
- NB_J: [OIII] at z=1.44, [OII] at z=2.23 (Lyα at z=8.9) (Sobral et al. 09b)
- $\odot \sim 10$ sq.deg, >1000 SF galaxies in each band (+AGN)
- Campaign Program at the <u>UKIRT</u>

Narrow band survey

HizELS search at z~9

Deepest+wider NB survey in near infrared: UKIRT/WFCAM

<u>NB</u> _J survey : $F_{lim} > 7.8 \times 10^{-17} \text{ erg s}^{-1} \text{ cm}$	-2
over ~1.5 sq.deg in 2 fields	

At z=8.96±0.06:

V_{Lyα}~10⁶ Μρc³ L_{Lyα}>10^{43.8} erg/s

Sobral et al. 2009a, MNRAS, 398, 75 Sobral et al. 2009b MNRAS, 398 L68

Dedicated detailed search:

- I) Selected Emitters: ~1600
- 2) Avoid clear noisy areas detailed visual inspections: ~1500
- 2) Robust detection (>5sigma) at least in NBJ: ~1400 emitters
- 4) No detection in any deep visible imaging data (ZJ drop): 2 candidates

COSMOS and UKIDSS UDS

HiZELS candidates z~9

- z-J>4 + emission line
- Detection on night-by-night
- No proper motion t~l month

Contamination by cool stars?

- NB excess and z-J drops ~4 with ~flat NIR imaging?
 - Yes! But at <u>7.5<z<8.0</u>, <u>9.1<z<9.5</u> and <u>11.5 < z < 12.2</u>

• VISTA an JWST are "safe" and the data can potentially be used to *identify* the coolest brown dwarfs as they should present negative **BB-NB** colours

Sobral et al. 2009b MNRAS, 398 L68

HizELS candidates z=8.96

- CGS4 spectroscopy: no line down to $\sim 4 \times 10^{16}$ erg/s/cm²
- No detection with follow-up UKIRT J observations
- Both candidates rejected (explained as complicated artifacts caused by jittering+slightly hot pixels)
- So... 0 detections out of ~1500 emitters
- Allows the best constraint on the LF

Constraints on the LAE LF

Sobral et al. 2009b

Model Comparison

Sobral et al. 2009b

Updates - ZEN3 (ZES)

- Seven new z=7.7 LAE candidates?
 - Other candidates?
 - Not very convincing...

Hibon et al. 2009

Ultra-VISTA: ELVIS

40

20

- COSMOS deep YJHK (1410 hours) + deep NBJ (180 hours) + shallow YJHK (212 hours)
- Window for the Universe at 6.5<z<10
- ~IO-30 Lyα emitters at z=8.8 expected to be found
- <u>HizELS</u>: LASER, 5 guaranteed nights: Lyα z=7.2 (T-dwarf free!) + [OII] at z=1.6

Future looks bright

(although galaxies look faint!)

- The next ~7 years
- ~100s of galaxies at z>7?
- Detailed space & ground follow-ups
- Re-ionization
- AGN vs SF activity at z>7?
- z>10? What is the "limit"?
- UKIRT/HizELS to find the brightest Lyα (AGN?) emitters at z=8.9?

Thank you