

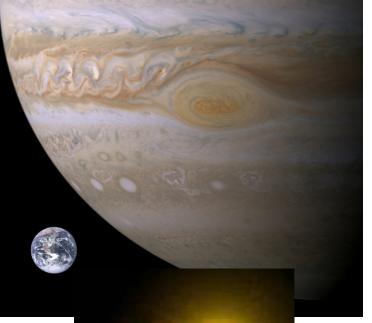
UKIRT PLANET FINDER

13 October 2009

- Community says it cares (letters of support from 26 UK astrophysics groups)
- Community writes applications (e.g. ESO C TAC 'problem')
- Community writes papers (last year 655 refereed)
- Media (public) cares (exoplanets dominate press)
- Governments care, eg. Clinton televised announcement of ALH84001
- Long colourful history, e.g. warning to anyone who finds themselves transported back to the 17th century

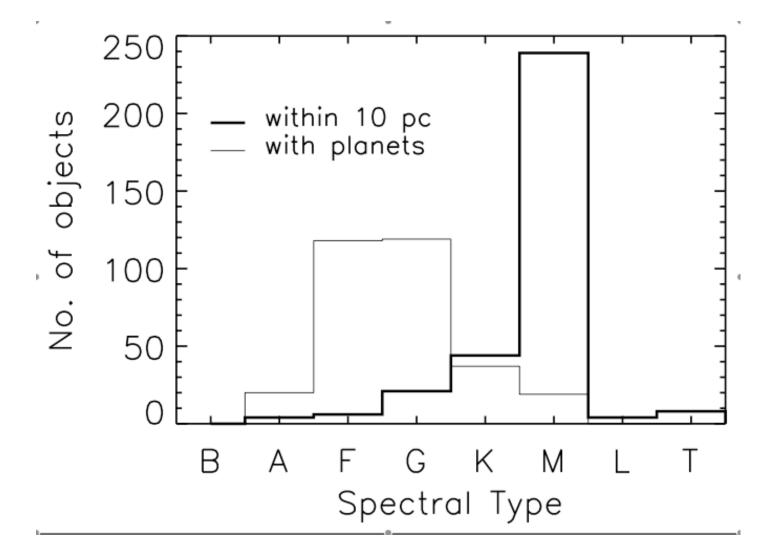
Giordano Bruno

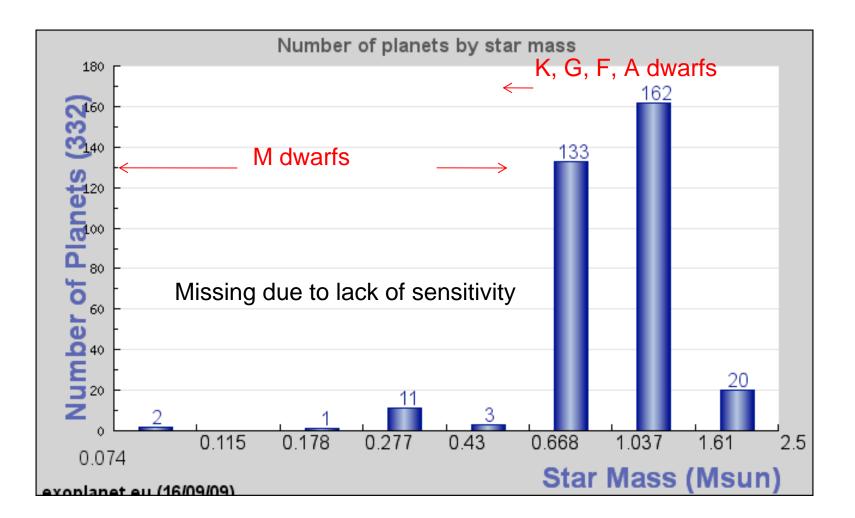
- Italian philosopher
- Advocate of heliocentrism and the infinity universe


"In space there are countless constellations, suns and p because they give light; the planets remain invisible, There are also numberless earths circling around their than this globe of ours. For no reasonable mind can a that may be far more magnificent than ours would no similar akeven some to the share appendice of ours." Roman Inquisition!

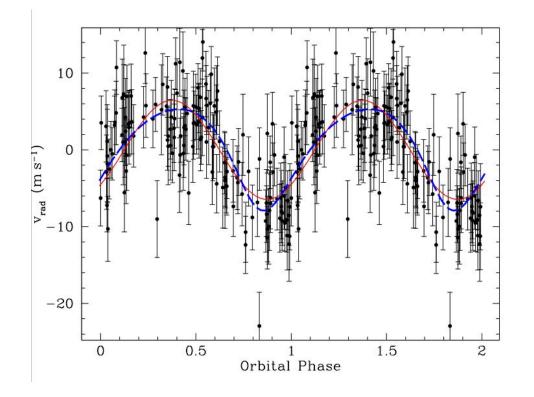
 In 1962 Giordano Bruno pardoned by catholic church

The holy grail of exoplanet hunting – Earth-mass planets

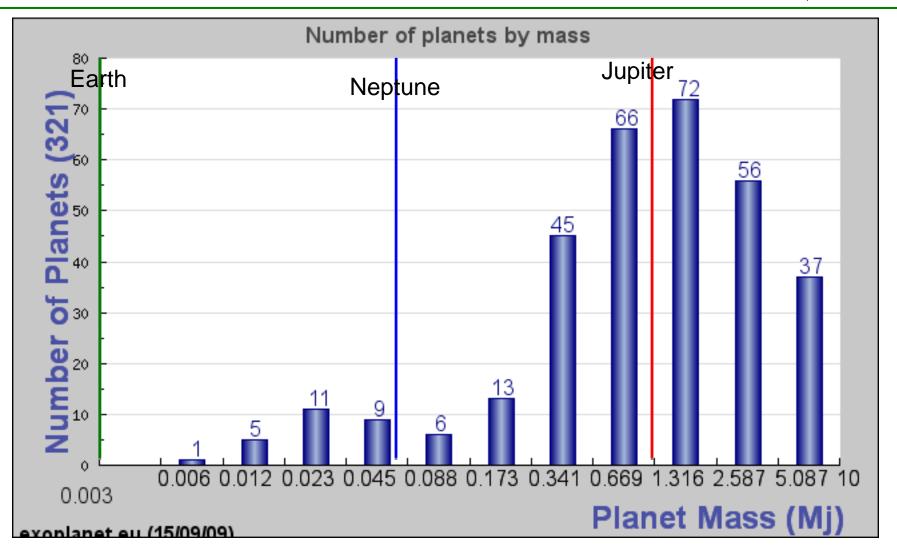

- Earth-mass planets in the habitable zones of the nearest stars
- Majority of planets found to date are giants
- Smaller planets can be found around smaller stars



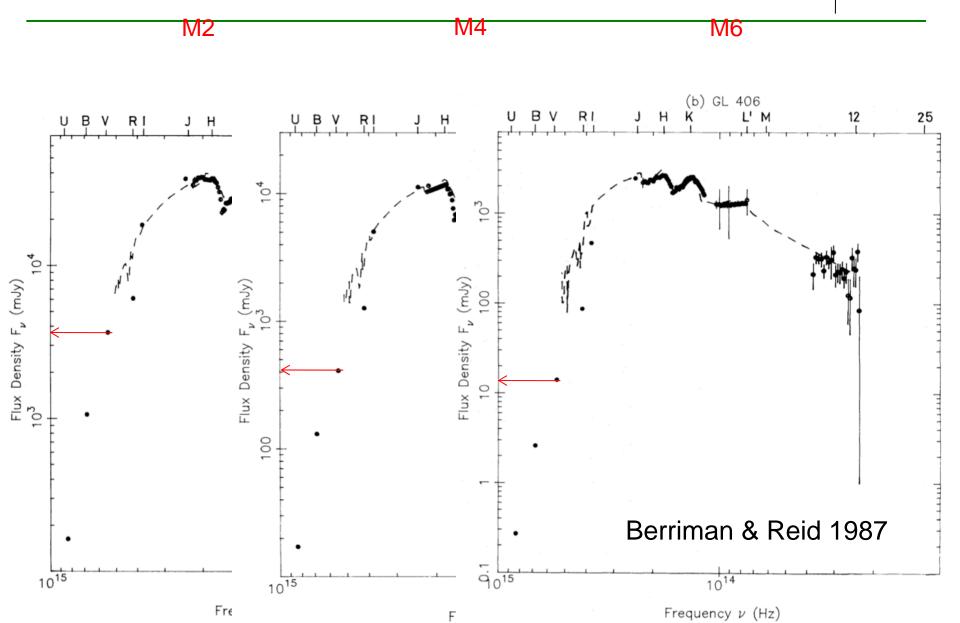
Are there planets around the majority of stars (M dwarfs)?


Astrophysically ... unexplored

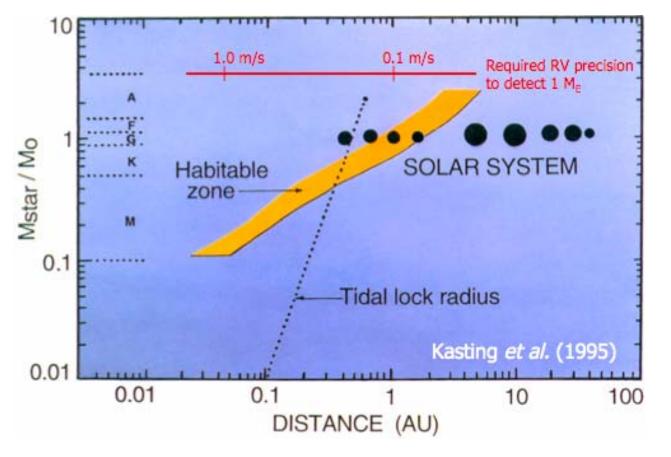
Optical RVs is hard work for M dwarfs


Low mass planets are being discovered around M dwarfs but tough even with Keck

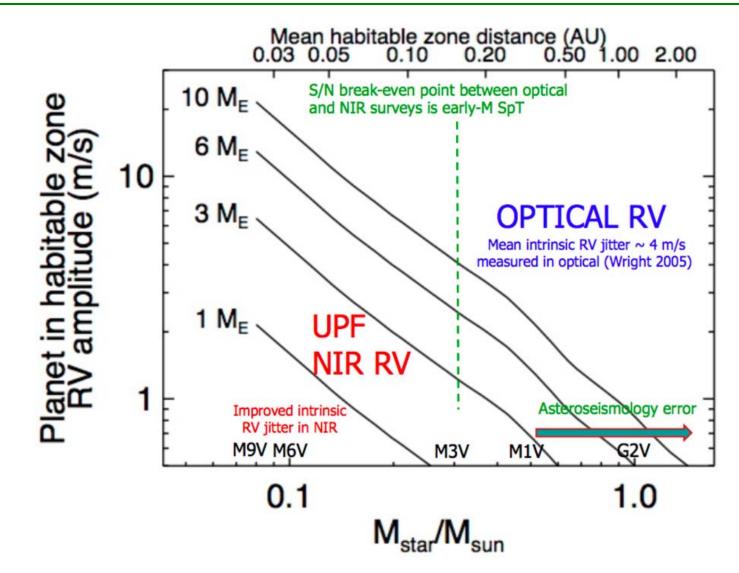
GI876 (M4V), 4.7pc 1.9 day period Msini=7.5M_{Earth} 1997-2005 Keck monitoring including data on 6 consecutive nights Rivera et al. 2005


Planet mass function

Why the infrared?



Accessible habitable zones


Habitable zone inside 0.3 AU for M dwarfs

Impact of tidal locking unclear

UPF

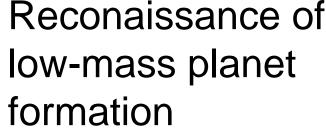
The potential in the infrared

194night/yr for 5yrs @ Y=11.75 J=11.25 H=10.75, S/N=150 in 1hr, 30 epochs

~Sp Type:	Mass	No. of stars
M2.5 V	0.3	200
M3.0 V	0.24	200
M4.0 V	0.19	200
M5.0 V	0.15	200
M6.0 V	0.12	114
M6.5 V	0.1	37
M8.0 V	0.09	14
M9.0 V	0.08	5
Total		970

Survey size of 1000 recommended by NASA exoplanet community report 12

Surveys


 Closest 1000 M dwarfs

- 10000 M dwarfs for transitting exoplanets within 50pc
- dwarfs

Closest exoplanets to below 1 M_{Earth}

100 transitting exoplanets

200 brown dwarfs

Other Science

- Ionisation history of the Universe from rapid follow-up of z>7 GRBs
- Studies of weather, temperature, gravity and abundance for cool stars, particularly, brown dwarfs, protostars and M giants
- Zeeman Doppler Imaging
- Characterization of extrasolar planets
- Abundance analysis of comets
- Planetary weather and circulation patterns
- Asteroseismology
- Nuclear activity in nearby galaxies

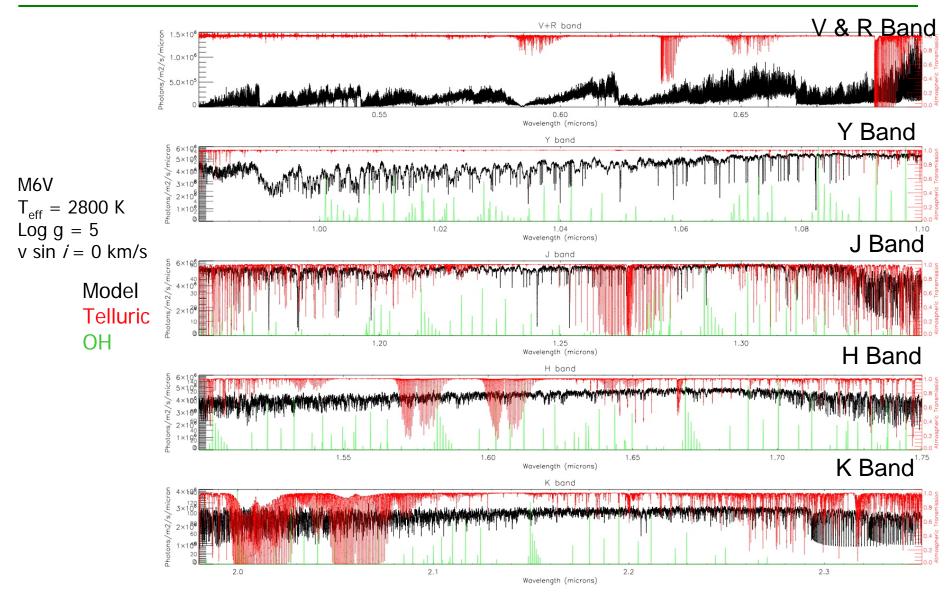
Exoplanet competition

- Super high precision Keck, HARPS, AAT optical surveys
- Other IR-stabilised spectrographs – none fully funded
- (also plans Discovery Channel, Subaru, Okayama .. and for E-ELT, TMT)
- Space/IR transit missions

Instrument/ Telescope	λ- λ/Δλ	First Light	Comment PRV √ ¥						
CARMENES /Calar Alto	0.5-1.8/80k	2014	PRVS design ✔						
SPIROU/CF HT	0.9-2.5/50k	2014	Polarimeter 🗸						
Nauhal/GTC	1-?/70k	2014	PRVS design \checkmark						
GIANO/TN G	1-2.5/50k	2011	MultipleModes ?						
HET	1-1.8/74k	2015	PRVS Design ✔						
COROT, Kepler,									
Mearth, WTS									

Challenges of RV in the NIR

Significant telluric contamination in the NIR

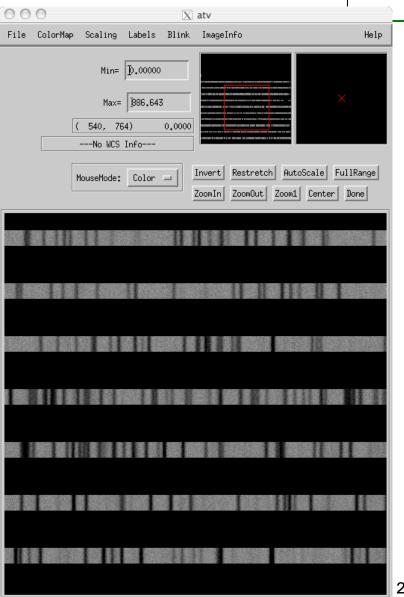

- Mask out ~ 30 km/s around telluric features deeper than 2%
- At R=70,000 (14,000 ft, 2.5 mm PWV, 1.2 air-mass) this leaves 87% of Y, 34% of J, and 58% of H
- Simulations indicate resulting 'telluric jitter' ~ 0.5 m/s

Simulation – significant benefit to Mauna Kea

- Simultaneous wavelength fiducial covering NIR is required for high precision RV spectroscopy
 - Suitable gas/gases for a NIR absorption cell
 - Use simultaneously exposed arcs (Th-Ar, Kr, Ne, Xe) and ultra-stable spectrograph
 - Use of a laser comb possible following R&D

Simulation / Prototype

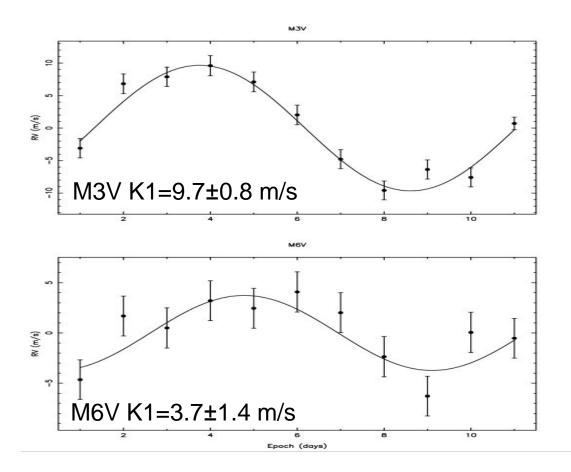
Atmospheric limits? Mauna Kea is best site to avoid tellurics



UPF

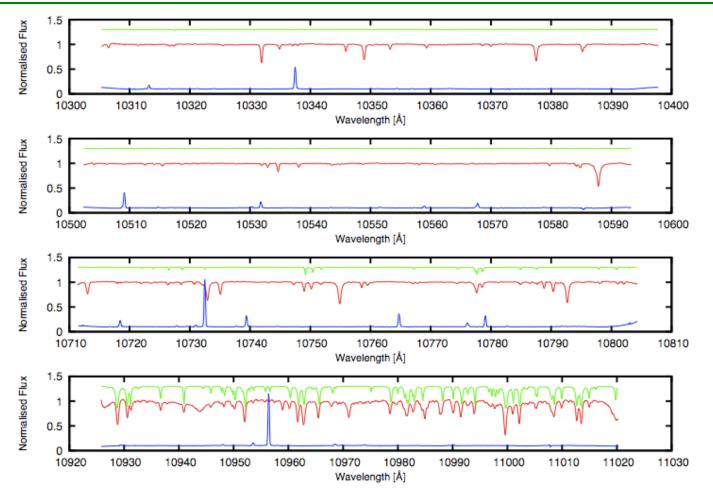
Simulations

• Outputs:


- 2-D image
- 1-D photon, error, S/N spectra

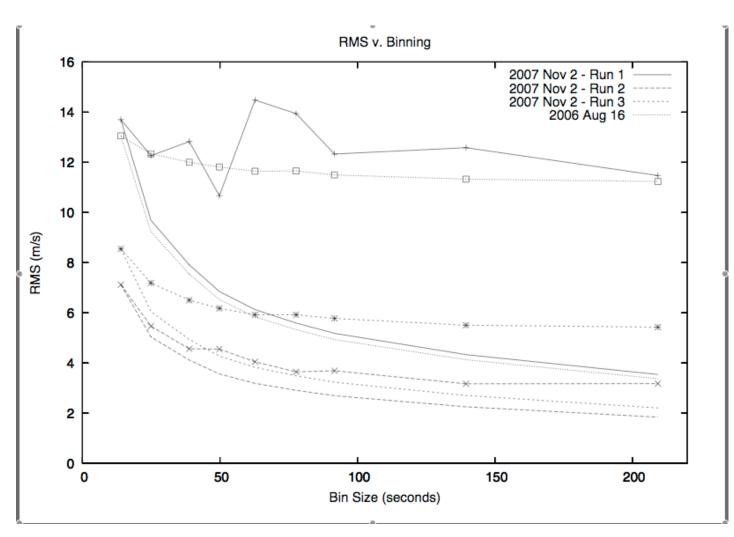
Analysis of simulated M dwarfs

- Analysis of simulated spectra
- 11 simulated spectra uniformly sampled in period (10 days)
- M3V K1=10.0 m/s
- M6V K1=5.0 m/s
- Each spectrum:
- 0.98-1.10 um (Y band)
- v sin *i = 5 km/s*
- Scaled to J=9.0, Int. time=900 s
- S/N~150, R=70,000
- Telluric absorption, 0-100 m/s
- 'Telluric clean' regions of Y selected but no telluric mask
- RESULTS (Y band only):
- M3V K1=9.7±0.8 m/s
- M6V K1=3.7±1.4 m/s
- RV code agrees with independent Bouchy analysis
- Effect of telluric jitter, ~0.5 m/s



PRVS Pathfinder - test bed for IR stability measurements on Sun

With insulation jacket

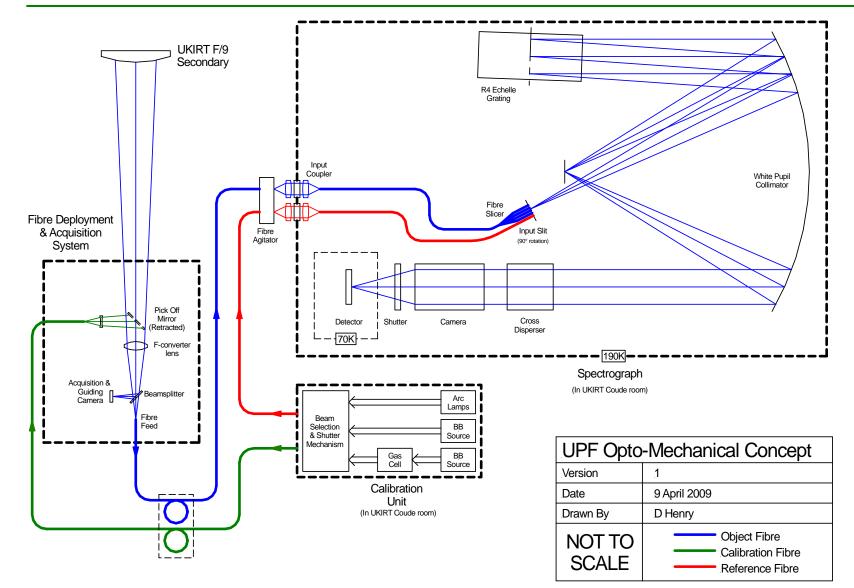

Y- Band Spectra with ThAr lamp – change background

Red – observed, Green – telluric model, Blue – ThAr/10

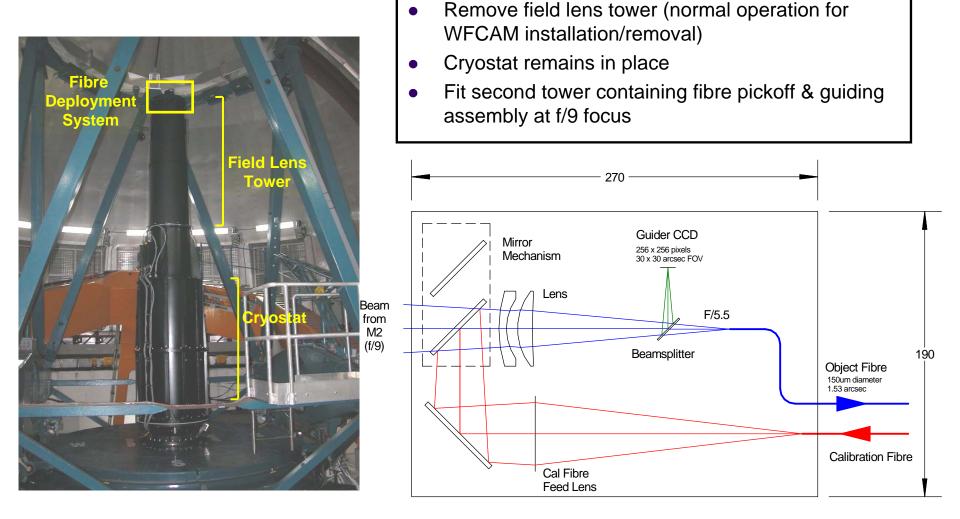
Pathfinder RMS on Sun for different configurations

UPG

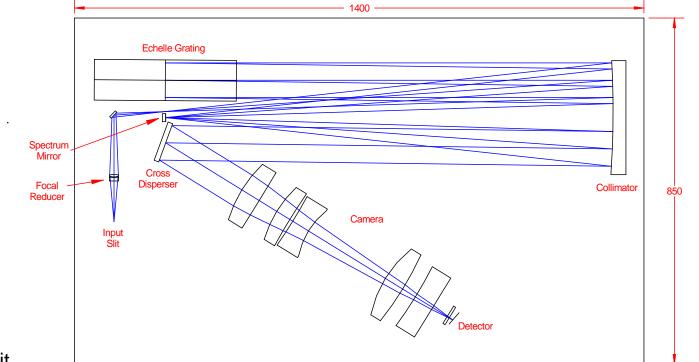
Precision improvement of 2 orders of magnitude - Ramsey et al. 2008, PASP, 120, 887 ²⁴


UPF Design Baseline Concept

- Design inherited from Gemini PRVS
- Optical design similar to HARPS, UVES, MRS spectrographs
- Cross dispersed echelle spectrograph
 - White pupil collimator design
 - Refractive camera
 - No mechanisms (in main optical path)
- Fibre fed
 - Fibre deployment system located on WFCAM cryostat
- Spectrograph and calibration unit located in Coude room

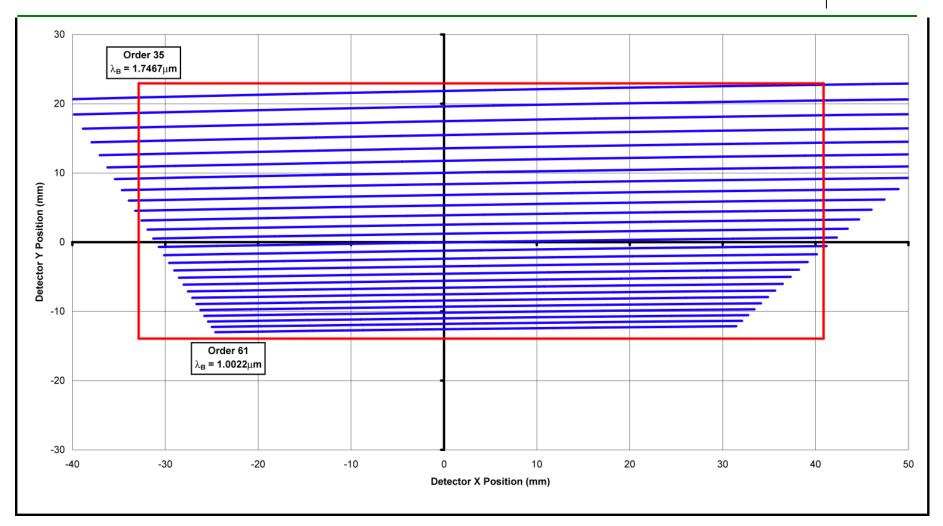


Instrument Concept



Fibre deployment and acquisition

Spectrograph Optical Layout

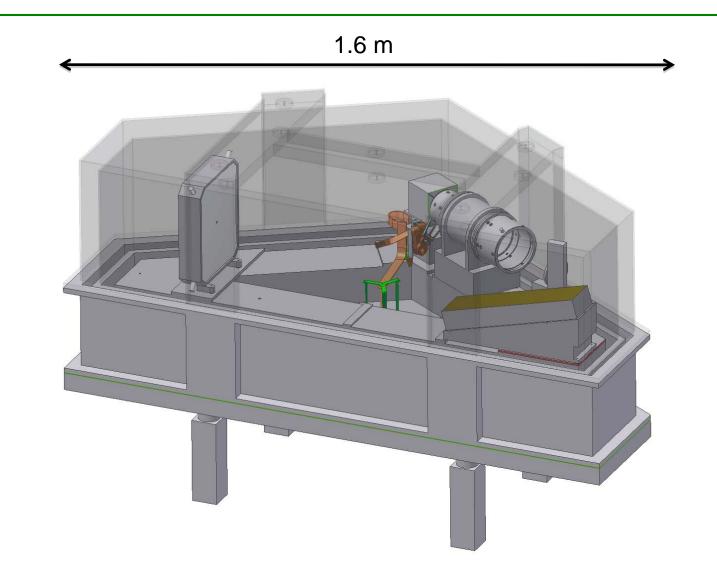


- Input slit
 - 0.46 arcsec wide, 0.36 x 0.047mm effective size, f/5
- Focal reducer
 - Convert from f/5 to f/13
- Single collimator
 - Parabolic mirror, f=1100mm, 85mm collimated beam diameter
- Spectrum mirror
 - Spectrally dispersed image at intermediate focal plane

- Echelle
 - 31.6 lines/mm, R4 (75° blaze angle)

- Cross disperser
 - Reflective grating
- Camera
 - f=450mm, f/5.3
- Detector
 - 2 x 2K² HAWAII-2RG arrays ³¹

UPF Spectral Format



Detector array footprint 2 x 2K² HAWAII-2RG arrays 73.728 x 36.864mm

Cryostat 3D view

Achieving metre per second precision

- Metre per second RV precision is equivalent to 0.001 of a pixel
- Large wavelength coverage in single exposure
 - Hundreds of spectral features
- Highly stable instrument
 - Guiding at fibre input
 - Fibre scrambling
 - Fibre agitator reduces modal noise in fibres
 - No other mechanisms (fixed focus, single grating, single filter)
 - Floor mounted instrument gravitationally stable, so no flexure
 - Under vacuum removes effects of pressure and humidity variation
 - Located in Coude room or instrument lab
 - Less than 2K annual temperature variation
 - Active temperature stabilisation of spectrograph optical bench
 - ±0.05K over 24 hours
- Simultaneous calibration via reference fibre tracks drift in wavelength scale over an integration

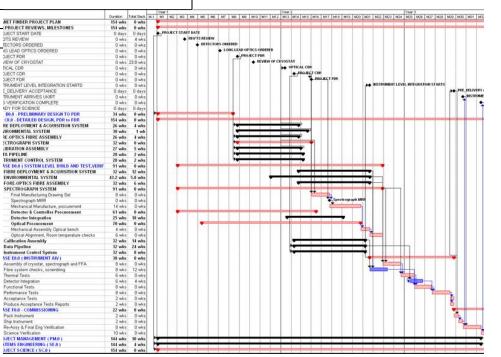
UP

Instrument expectations

Error source	Contribution	Comment				
Drift measurement with sim. arcs	< 0.2 m/s	~ 300 arc lines typically > 60 s				
Wavelength calibration	< 0.1 m/s	> 1000 arc lines during daytime calibration				
Instrument SRF measurement	< 0.3 m/s	> 1000 arc lines during daytime calibration				
Photon-weighted centre of integration time	< 0.1 m/s	Median sky conditions (1m/s corresponds to 30s)				
Opto-mechanical stability	< 0.3 m/s	< 0.1 pixel drift during an observation				
Centring and guiding	< 0.3 m/s	Spatial scrambling of fibre and CCD guiding				
Background subtraction	< 0.1 m/s	Stability of background, dark				
Total non-source noise	< 0.6 m/s	RMS				
Course shotes soise	0.0.00/0					
Source photon noise	0.8 m/s	m _Y =10.5 M6 V (<i>v</i> sin <i>i</i> =5 km/s) at 10 pc S/N=150 in 14 min				
Source radial velocity jitter	(0-20 m/s)	Sources will be selected for minimum radial velocity jitter				
Atmospheric noise	~0.5 m/s					
Total noise (1 σ)	1.1 m/s	For typical M6 V star at 10 pc (no radial velocity jitter)				

Schedule

- ✤ Goal is to maximise science impact by earliest on-sky availability.
- ✤ 34 months is driven by long-lead items
 - Science Detectors 12 months
 - Cross Disperser 12 15 months
 - Echelle 4 6 months
 - Main Optics 5 7 months
 - Cryostat 4 months
- Hence early emphasis on optics specification and detector selection
- Critical Paths are Spectrograph Optics and Design/Build
 - Followed closely by Environmental System (Cryostat)
- Risk analysis indicates a contingency of 4 months is required


UPF

Schedule - Milestones

Milestone	Month	Comment													
Requirements review	3	Update of OCDD	and FPRD to re	eflect UI	KIR	RT .									
Detector selection and ordering	4	Detectors are lor	ng lead & prone	e to dela	ay										
Order long lead optical components	7														
PDR	8														
CDR	14	Full Review with	Customer atte	ndance											
FDR	15	Close-out of acti	ons from CDR												
Phase D – System Level AIV starts	19														
Phase E - Instrument AIV starts	21														
Instrument delivered to UKIRT	30		NET FINDER PROJECT PLAN	154 wks 0) wks	Vew1	4 MS MG M7 N	B M9 M10 M11	Vear 2 M12 M13 A	III MIS MIG	M17 M18 M19	M20 M21 M22	Vew M23 M24 M25	3 M26 M27 M28	I M29 M30 M01
Ready for Science	34	End of Project	PROJECT REVIEWS, MILESTONES DUECT START DATE TST SEVIEW TECTORS ORDERED VG LEAD OPTICS ORDERED	154 wks 0 0 days 0 0 wks 4 0 wks 0 0 wks 0	l days 4 wics 0 wics	PROJECT START	O'TS REVIEW	ID LEAD OP TICS OPDER	ED.						

Start in Jan 2010

Delivery late 2012

Summary

- Low-risk Existing design achieves science goals
- Low-cost detection of Earth-mass planets in habitable zones of *closest* stars
- Inspirational new field re-connecting astrophysics to the rest of science
- Immense media (public) and community interest