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Preparing for 
Some Extreme 
Weather



Synoptic imaging surveys take data all 
the time - even in poor conditions

Strong lens detection:
What will lensed quasars look like in the 
PS1 and LSST catalogues? How might we 
find them, cleanly? 

Atmospheric PSF anisotropy:
Can we predict the shape of the PSF at 
any given sky position, just from the stars 
observed in a 15 second exposure?
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Strong gravitational lensing

• Massive galaxies lying right in front of distant quasars can provide 2 or 
more possible null geodesics that connect to our detector - all of them are 
followed and we see multiple, time-delayed images of the same AGN

• Science applications include: weighing the “lens” galaxy; quantifying 
the lens aberrations due to its “missing” CDM subhalos; measuring an 
absolute distance to the lens from the time delays; and much more...
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Figure: Dan Coe (2011), OMEGA Project
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How many lensed quasars are there?

• HSC+DES+PS1: ~3000 lenses (400 quads);  
• LSST should detect ~8000 lenses (1000 quads)
• How are we going to find them all? What will they 
look like? In the images? In the catalogs?                   
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ImSim

 

Cosmology OpSim

Reference image
and catalog

Atmosphere

Telescope optics

Detector
Simulated

Image

Monte Carlo: 
each exposure has 
about as many 
signal photons as 
pixels...
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ImSim: LSST lensed quasars

• Lenses in mock LSST catalog from Oguri & Marshall (2010) 
supplied as reference catalog to ImSim. Initial testing: 
Jernigan et al, AAS2011. Ongoing: LSST DC3b PT1.2
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ImSim: LSST lensed quasars

• Basic object detection with default SExtractor, measure fraction 
of systems with 2 or more quasar images detected

• “Lucky imaging”: 20% complete with no lens subtraction
• Repeat with LSST DM source detector in PT1.2 - Lupton’s talk
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No subtraction

Lens subtracted

Lens completeness driven by IQ
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Application: PS1 lensed quasars
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• Lucky imaging with PS1: example shown is known lens 
H1413+117 observed in grizY since 2009

• QSO identification depends on variability as well as colour: 
joint modelling of data at all epochs in all filters is 
required. Testing on ImSim mock lenses continues...
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Conclusions: strong lens analysis
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• Variable observing conditions are a plus for strong lens 
detection - occasionally we get a high resolution image

• Lens candidacy requires a lens and source model: images 
must be of plausibly equal colour, with lightcurves consistent 
with being equal but offset (modulo microlensing): joint 
modelling of data at all epochs and in all filters is required. 

What do we gain from the simulations?
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• Variable observing conditions are a plus for strong lens 
detection - occasionally we get a high resolution image

• Lens candidacy requires a lens and source model: images 
must be of plausibly equal colour, with lightcurves consistent 
with being equal but offset (modulo microlensing): joint 
modelling of data at all epochs and in all filters is required. 

What do we gain from the simulations?

• Strong lenses are rare: we only know a few dozen bright 
systems in the PS1 3pi survey area, and they were selected in 
a very different way

• The ImSim systems have realistically faint images and lenses, 
allowing us to test detection of as yet unseen objects
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Weak gravitational lensing

• Gravitating mass is revealed by the weak, tangential distortion and 
alignment of images of background galaxies

• The Point Spread Function (PSF) causes ~10 times stronger 
“correlated ellipticity” - the PSF at each galaxy position needs to be 
first estimated and then deconvolved at high accuracy

• “PSF interpolation” is an image reconstruction problem
12
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PSF anisotropy

• Images of stars provide sparse, noisy PSF ellipticity data
• Instrumental PSF ellipticity (typically) varies on large (whole field) 

angular scales, and the patterns repeat: low order polynomials work 
well, and/or all images can be used to densely sample a set of basis 
functions to model the underlying ellipticity field (Jarvis & Jain 2008)
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Ellipticity correlation functions

• After PSF correction, (complex) galaxy ellipticity is an 
estimator for the local gravitational shear: the shear correlation 
function can be predicted from cosmological models, and fitted 
to the observed ellipticity correlation function
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L. Fu et al.: Very weak lensing in the CFHTLS wide 15

-2.0⋅10-5

0.0⋅100

2.0⋅10-5

4.0⋅10-5

6.0⋅10-5

8.0⋅10-5

1.0⋅10-4

1.2⋅10-4

1.4⋅10-4

 1  10  100

ξ Ε

θ [arcmin]

-4.0⋅10-6
0.0⋅100
4.0⋅10-6
8.0⋅10-6
1.2⋅10-5

 50  100 150 200 250

-1.0⋅10-5

-5.0⋅10-6

0.0⋅100

5.0⋅10-6

1.0⋅10-5

1.5⋅10-5

2.0⋅10-5

 1  10  100

<M
ap2   >

θ [arcmin]

-1.0⋅10-6

0.0⋅100

1.0⋅10-6

2.0⋅10-6

3.0⋅10-6

 50  100 150 200 250

-2.0⋅10-5

0.0⋅100

2.0⋅10-5

4.0⋅10-5

6.0⋅10-5

8.0⋅10-5

1.0⋅10-4

1.2⋅10-4

1.4⋅10-4

 1  10  100

<|
γ|2 >

θ [arcmin]

-5.0⋅10-6

0.0⋅100

5.0⋅10-6

1.0⋅10-5

1.5⋅10-5

 50  100 150 200 250

Fig. 4. Two-point statistics from the combined 57 pointings. The error
bars of the E-mode include statistical noise added in quadrature to the
non-Gaussian cosmic variance. Only statistical uncertainty contributes
to the error budget for the B-mode. Red filled points show the E-mode,
black open points the B-mode. The enlargements in each panel show
the signal in the angular range 35′−230′.

theoretical (statistical) and not estimated from the data, which
would include systematics (for example error contributions may
arise from the incomplete PSF correction). Moreover, the signal-
to-noise with the present CFHTLS Wide data is so high, even
for B-modes, that subtle effects may dominate the very small
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Fig. 5. The top-hat E-mode shear signals of W1 up to 200′ , of W2 up to
120′ and of W3 up to 230′ are shown. The error bars includes statistical
noise and cosmic variance for each individual field.

Poissonian error, particularly on large scales where there are a
significant number of galaxy pairs.

The field-to-field variation of the B-modes is a possible way
to assess these effects on the error buget. We tried to measure this
by splitting the 3 Wide fields into 11 blocks of 2 × 2 deg2 each,
which allows to calculate the B-modes on scales up to 60 arcmin
in each block. We obtained B-modes with amplitude very simi-
lar to Fig. 4 but the field-to-field scatter is larger than the plotted
error bars and reaches a factor of 2 at 60′. This is an interest-
ing indication that we are likely underestimating the error on
B-modes, even though it is not a precise measurement due to the
small number of independant fields. A thorough analysis of this
noise contribution needs many more field and is left to a future
analysis of the CFHTLS four year data.

4.4. Cross-check and control of systematics

We cross-checked the shear measurement by using an indepen-
dent analysis on the same data sets. This analysis was done
with another version of KSB+ that has been tested with the
STEP1+2 simulations (“HH” in Heymans et al. 2006a; Massey
et al. 2007b). Hereafter, we refer to our analysis as “Pipeline I”
and to the “HH” results as “Pipeline II”.

The left panel of Fig. 6 shows the shear estimated for each
galaxy by each of the pipelines. The results are in good agree-
ment for ellipticity values per component between −0.6 and 0.6.
For ellipticities outside this range the dispersion between the
pipelines is larger and a trend for an underestimation of the shear
from Pipeline I with respect to Pipeline II can be seen. Note
however that the pipelines are not optimised for large elliptic-
ities, since the STEP simulation galaxies have ellipticities that
are smaller than 0.1.

We then compare the two-point functions using the aperture-
mass variance. We choose this statistic because angular scales
are less correlated than for the top-hat dispersion. Moreover,
it does not have any ambiguity related to a non-local E/B de-
composition. The values of Map are calculated from the two
pipelines using only objects detected by both pipelines. Because
the pipelines have different selection criteria the common ob-
jects are only two-thirds of the whole sample. Each object
is assigned a weight which is the product of its weights in
each of the two pipelines. The largest radius explored in the
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What about the atmosphere?
• Wittman (2005) measured the stars in a small set of 10-30s 

images from Subaru, and found a residual PSF ellipticity 
correlation at the 1-3x10-5 level on scales of 1 arcmin

• Early simulations by de Vries et al (2007) using frozen 
Kolmogorov phase screens predicted significant PSF ellipticity 
due to atmospheric turbulence, that decreases with sqrt(t)

• Heymans et al (2011) used archival CFHT images taken over 
a wide range of observing epochs, exposure times and 
conditions, and confirmed these results, noting that: 
“on these angular scales the high spatial frequency of the 
atmospheric aberration is too rapid to model with a typical 
stellar density and standard methods”

• Use simulations to develop new PSF interpolation 
methods that can cope with atmospheric effects
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The LSST ImSim PSF
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Monte Carlo: 
per exposure, more 
signal photons than 
pixels 

• Chihway Chang (KIPAC) is studying the LSST PSF - and its 
associated weak lensing systematic errors - using ImSim

• Chang, Marshall et al (2011a, 2011b), Jernigan et al (2011), all in prep
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LSST ImSim - does it match the data?
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Monte Carlo: 
per exposure, more 
signal photons than 
pixels 

• Measure stars in real (purple) and simulated (grey/green) 15s CFHT 
chip images, subtract 2nd order polynomial model (for instrument)

• Ellipticity correlation functions match well in normalisation, slope 
and anti-correlation regime. Simulations predict large scatter...
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• Aim: reconstruct maps of ellipticity 
components 1 and 2

• Star shape data are sparse and noisy. 
Inference: Gaussian likelihood and (positive/
negative) Maximum Entropy prior, assigned 
to 7 hidden images

• Each hidden image is convolved with a 
different Gaussian kernel, then summed

• Flexible, multi-scale: allows high frequency 
spatial variations to be modelled

• Different scales’ relative weight is simulation-
driven: computed from rms of hidden images 
in reconstructions of high S/N mock starfields. 
Weight ~ kernel mass

• Small scale structure only appears when the 
data demand it!

PSFent

18

Hidden Kernel Visible
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Example
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Truth Data PSFent Polynomial Boxcar
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WL Systematics
• Combining ~1000 exposures, LSST statistical errors should be very small 

- need to compare residual correlations from PSF interpolation with these
• Key quantity is mean square residual additive systematic error defined by 

Amara & Refregier (2008):  2sys < 10-7 for LSST, or  2sys,PSF < 4x10-8

• Simulated data allows this quantity to be estimated directly, as integral 
under residual (reconstruction - truth) ellipticity correlation function:
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Median of 100 exposures,
 1 star/arcmin2

PSFEnt

10-4

10-5

Single exposure 2sys,PSF

Polynomial:  10x10-5 

Boxcar:           6x10-5 

Target:             4x10-5 

PSFent:           2x10-5
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2sys,PSF scales as 1/Nexp, as 
shown with simulations



Phil Marshall, University of Oxford  •  “Following the Photons”  •  Edinburgh  •  October 2011

WL Systematics
• Combining ~1000 exposures, LSST statistical errors should be very small 

- need to compare residual correlations from PSF interpolation with these
• Key quantity is mean square residual additive systematic error defined by 

Amara & Refregier (2008):  2sys < 10-7 for LSST, or  2sys,PSF < 4x10-8

• Simulated data allows this quantity to be estimated directly, as integral 
under residual (reconstruction - truth) ellipticity correlation function:

20

Median of 100 exposures,
 1 star/arcmin2

PSFEnt

10-4

10-5

Single exposure 2sys,PSF

Polynomial:  10x10-5 

Boxcar:           6x10-5 

Target:             4x10-5 

PSFent:           2x10-5



Phil Marshall, University of Oxford  •  “Following the Photons”  •  Edinburgh  •  October 2011

Atmospheric PSFs: conclusions

• PSFent provides the factor of 5 
improvement required (over 
standard techniques) to reach 
the required, single exposure, 
residual systematic limit of 
2sys,PSF < 4x10-5, in all fields 
with star density > 0.5 arcmin-2  

• In these fields, PSF interpolation 
will not be the dominant source 
of error in the shear correlation 
function at arcminute scales. An 
additional factor of two will be 
required to push to half this 
density.
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What did we gain from the simulations?
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Thanks!
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Questions
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Q. Do the PSF shape parameters need to be interpolated in 
other dimensions? LIke colour, brightness etc?
A. Maybe, yes - current weak lensing analyses do this at some 
level. You could imagine interpolating spatially in bins of X, or as 
a function of X.

Q. What about using PCA?
A. The whole problem is one of finding the optimal basis set for 
reconstructing the ellipticity maps, and PCA is one way of 
deriving a basis set. Would a simulation defined set of PCs make 
a good basis set? The problem is that the atmospheric maps are 
like noise fields, so it’s unlikely that a simple way of reducing the 
size of the PC set would be obvious. PCs, Fourier modes and so 
on are just rotations from real space - the key is to reduce the 
number of degrees of freedom in a physically motivated way. We 
do it by deriving a MaxEnt prior on our hidden spaces - 
something similar could be done for  other basis sets.
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Q. PSFent sounds horribly slow. Is it?
A. It takes ~10s to reconstruct the 2 ellipticity maps for each chip 
image on a standard desktop workstation, so about 200 would 
be needed to keep up with the LSST data rate, today. Moore’s 
Law will help, but we will undoubtedly need to interpolate more 
than just two PSF shape parameters. 

Q. What about PSF size?
A. We have not tried this yet, but I would be surprised if we 
cannot interpolate that in the same way: PSFent is so flexible. 
Whether the residual systematics due to PSF size interpolation 
average down in the same way is to be investigated...


