

Adaptive optics simulations etc

Alastair Basden
Durham University

AO: Introduction

AO: Correction
Incident
wavefront

DM

Corrected
wavefront

AO: Performance

● How well will a given AO system perform?
● We need to simulate it to find out...

AO: Simulation

● Lots of components:
● Atmosphere
● Telescope optics
● Wavefront sensors
● Deformable mirrors
● Wavefront reconstruction algorithms
● Mirror control
● Science cameras

2 main simulation categories:

Analytical (usually Fourier based)

Monte-Carlo (physical/geometrical
 optics, time series etc)

AO: The atmosphere

AO: Monte-Carlo

● Break into timesteps:
● Translate phase screens (wind velocity, frozen

turbulence etc)
– Gives time varying turbulence

● Introduce DM effect
– Shaped on previous timestep

● Measure wavefront with wavefront sensor
– CCD noise, shot noise etc

● Make science image, and integrate with previous
images

● Compute new DM shape (wavefront reconstruction)

AO: 3 stages

● Calibrations
● Calculations
● Atmosphere/telescope simulation

● Full end-to-end simulation
● Parallelised with MPI and threading

AO: Calibrations

● Need to know how the DM affects the
wavefronts
● Poke a DM actuator
● Measure wavefront slopes
● Poke next actuator
● Measure wavefront slopes
● repeat ad-infinitum

● Matrix equation: Ax=b

A
1
0
0
0
...
0
=

s1

s2

s3

...
sn

A
0
1
0
0
...
0
=

s1

s2

s3

...
sn

A
0
0
1
0
...
0
=

s1

s2

s3

...
sn

A : 1 ... m

...
n

m: Number of actuators
n: Number of slopes

AO: Calculations

● Solve Ax=b
● b is the slope measurements (known)
● A is the interaction matrix (known)
● x are the values to be put on the DM

● x = A-1 b
● So, compute A-1

● Pseudo inverse: (ATA)-1AT

AO: Simulation

● Wavefront sensor measures slopes, b
● Reformat into a vector

● Compute the corresponding correction:
● x=A-1b

● Apply x to the mirror:
● reshape x to 2D, and apply cubic spline

interpolation

Monte-Carlo: challenges

● Larger simulations take longer to run
● Higher order or larger telescope

● Scales as O(D^4) for reconstruction
● The inversion step (one off) scales as O(D^6)

● Nasty... but only once per simulation
● WHT: 4.2m → 0.05s
● ELT: 42m → 14 hours!!! (39m → 9 hours)

– Actually more like 4-5 hours

AO: Alternative solvers

● Inversion can take too long
● Use an iterative solver (a direct solver):

● Ax=b
● No inversion necessary (A-1 not needed)
● Conjugate gradient algorithm favoured
● But must be done every simulation time-step

– Takes longer to run, replaces the matrix-vector
multiplication

– O(D4) but with much larger pre-factor

A lesson

● Calibrate: 30 minutes
● Compute (matrix inversion): 4 hours
● Simulate: 6 hours

Change reconstruction algorithm:
Compute: 0 hours
Simulate: 8 hours

2 hour gain
Also quick view into expected performance:

30 minutes to first result (was 4.5 hours)
8.5 hours to end (was 10.5)

Use the most appropriate algorithms...

AO: Hardware acceleration

● Cray XD1 supercomputer
● 12 Opterons, 6 FPGAs
● Circa 2004

AO: Wavefront sensor acceleration

● Wavefront sensor module:
● Takes input phasescreen
● Split into sub-apertures
● 2D FFT and square each to produce noiseless spot

pattern
● Add random readout and shot noise
● Compute slopes from centroid position of each spot
● In an FPGA: 600x speedup!!!

– 9 months FTE

Amdahls Law

● The speedup achievable from an improvement
to a computation that affects a proportion P of
that computation where the improvement has a
speedup of S will be

1

1−P
P
S

s=600
If P=0.9:

Speedup 9.9x

If P=0.5:
Speedup 2x

If P=0.1:
Speedup 1.1x

CPU improvements

● Wait a year: CPUs will improve
● Will this render hardware acceleration

worthless?
● Depends on:

– simulation type
– achievable speedup
– effort required
– reusability

●For GPUs, effort usually small/medium
● Code reusable – should work with new GPUs
● Though performance gain can actually be a loss

if done badly

Simulation usability

● Tweaking an AO simulation is important
● While it is running...
● Allows a quick investigation of parameters

– to help decide on a parameter space to explore

● And helps debug (why isn't performance what we hoped for!)

● Diagnostics also important – plots, printouts etc
● How can we do this?

● Turn the simulation into a server
– Clients connect, and can then send commands/request data

● Use shared memory for parameters
– Clients can modify the shared memory – but more dangerous

Our approach to usability

● Simulation written in C and Python
● Python as a wrapper for C

– modules/algorithms and single operations

● And as a server

● Make use of Python introspection

– The ability to execute arbitrary code

– Which is sent via a socket from the user

● C modules written such that important parameters are accessible and
changeable from Python

– Trade-off between flexibility and implementation time

● Generally a good approach for this type of simulation
● Unanticipated changes can be made

● Prototyping in Python before (eventual) speedup in C

● Debugging made easy – can view all parameters/data in the simulation

Simulation

Server
Client Arbitrary commands...

Arbitrary commands...

Next step: Real-time simulation

● Big difference between simulation and on-sky

● So: Use as much of an on-sky system as we can:
● The real-time control system (DARC)

– Real-time implementation of algorithms

– Realistic configuration etc

● Simulate the atmosphere, WFS, DMs

● Faster simulations – since the RTCS is highly optimised
● Real-time for mid-order AO systems

● Allows development/testing of on-sky suitable algorithms

RTCS
(DARC)

WFS.pyWFS.py

Atmosphere.pyAtmosphere.py

DM.pyDM.py

Finally: Some results

● In AO it is standard practise to:
● Validate with other simulation tools (independent

codes)
● Validate with on-sky results – the ultimate test

Future plans

● Enabling of advanced AO simulations
● Different operational modes

– Ground layer AO, laser tomographic AO, extreme AO

● Speckle suppression

● Coronograph simulation

● Extensive use of Hamilton cluster
● Use existing hardware – reduce power consumption

● More end-to-end details
● Integrated Zemax models

● GPU acceleration
● Faster, better Performance/Watt

● Database caching

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

