Introduction	SDSS Imaging	Übercal	MARVELS	LSST

Using Simulations To Commission Algorithms And Pipelines

Robert Lupton

12 October 2011

ション ふゆ アメリア メリア しょうくの

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Introduction				

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ④�?

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Introduction	I			

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

I'll draw examples from:

- SDSS
 - Photo
 - Übercal
 - MARVELS
- LSST

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Introduction				

I'll draw examples from:

- SDSS
 - Photo
 - Übercal
 - MARVELS
- LSST

Acknowledgments: My thanks to

• The SDSS I, II, and III collaborations

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

- The LSST collaboration
- The organizing committee

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Introduction				

I'll draw examples from:

- SDSS
 - Photo
 - Übercal
 - MARVELS
- LSST

Acknowledgments: My thanks to

- The SDSS I, II, and III collaborations
- The LSST collaboration
- The organizing committee

Unacknowledgments: My unthanks to

- Nick Kaiser
- Phil Marshall

n	÷	1			÷		n
				<u> </u>			

SDSS Imaging

Übercal

MARVELS

LSST

SDSS

1998

2011 (D) (B) (E) (E) E OQ

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Motivatio	n for simulating	5		

We can use these simulated data to ask fairly detailed questions. If the sky brightness slowly increases over the duration of a photometric scan, does the photometric calibration software correct properly? What is the relative performance of the system at low and high Galactic latitudes? While the test year will no doubt bring some software surprises, the use of simulations has allowed us to have the data system integrated and largely debugged before the telescope itself is fully operational. The ability to use the same underlying data with varying degrees of complication will help isolate problems during debugging. The existence of a catalog with the "right" answers corresponding to a given simulation allows us to do regression testing in a detailed and quantitative way.

Jim Gunn, the SDSS Project Book

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Motivation	n for simulating	5		

We can use these simulated data to ask fairly detailed questions. If the sky brightness slowly increases over the duration of a photometric scan, does the photometric calibration software correct properly? What is the relative performance of the system at low and high Galactic latitudes? While the test year will no doubt bring some software surprises, the use of simulations has allowed us to have the data system integrated and largely debugged before the telescope itself is fully operational. The ability to use the same underlying data with varying degrees of complication will help isolate problems during debugging. The existence of a catalog with the "right" answers corresponding to a given simulation allows us to do regression testing in a detailed and quantitative way.

Jim Gunn, the SDSS Project Book

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
History	of Simulations			

• Forth version before 1994

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
History of	Simulations			

• Forth version before 1994

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
History of S	imulations			

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

• Forth version before 1994

• JPG version in 199?

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
History of S	Simulations			

• Forth version before 1994

- JPG version in 199?
- Large scale version in 1997 with real galaxies etc.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
History of S	Simulations			

• Forth version before 1994

- JPG version in 199?
- Large scale version in 1997 with real galaxies etc.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• First Light in 1998

SDSS data flow wasn't all that simple:

Imaging: $Photo \equiv PSP + Frames$

SDSS data flow wasn't all that simple:

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Integration				

The codes weren't all that simple either;

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Integration				

The codes weren't all that simple either; *e.g. Photo* totaled 150 kLines of C, and 85 kLines of TCL.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Integration				

ション ふゆ く 山 マ チャット しょうくしゃ

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Integration				

ション ふゆ く 山 マ チャット しょうくしゃ

• First light (full moon, no baffles): 9th May 1998

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Integration				

ション ふゆ く 山 マ チャット しょうくしゃ

- First light (full moon, no baffles): 9th May 1998
- First light (dark time, baffles): 29th May 1998

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Integration				

• First light (full moon, no baffles): 9th May 1998

• First light (dark time, baffles): 29th May 1998

• First QSOs: 14th June 1998

I.e. We were able to reduce first light data, and start finding QSOs within a month.

(日) (伊) (日) (日) (日) (0) (0)

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
How much	detail?			

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Did we need an image simulator to check the pipelines' integration?

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
How muc	ch detail?			

Did we need an image simulator to check the pipelines' integration? Why not simulate the files, stuffing the HDUs with plausible values?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
How much	detail?			

Did we need an image simulator to check the pipelines' integration? Why not simulate the files, stuffing the HDUs with plausible values?

We probably do need images. Interfaces are more than FITS; *e.g.* the flatfields (the psFF files) are stored as

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

kept.

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Algorithms				

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The early simulations were pretty simple:

• bulge + disk galaxies; double Gaussian PSF

The early simulations were pretty simple:

bulge + disk galaxies; double Gaussian PSF
 This was good enough to integrate pipelines, but had no code in common with the pipelines

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Algorithms				

The early simulations were pretty simple:

bulge + disk galaxies; double Gaussian PSF
 This was good enough to integrate pipelines, but had no code in common with the pipelines

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- Pro: Blind testing
- Con: Hard to keep interfaces in sync
 - e.g. what is the value of SOFT_BIAS?

The Japanese P{romotion, articipation} Group wrote their own simulator to test algorithmic issues.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

gal15.fits Exponential disk, $r_e = 8 pix$

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Inputs				

```
# Data to test profMean
#
sky=100
#
# with noise
#
gal15.fits \
    profMean<2>=4185.28 profMean<3>=2701.29 \
    profMean<4>=1387.53 profMean<5>=578.59 \
    profMean<6>=189.35675
```

. . .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Photome	tric Algorithm	s		

SDSS measured circular aperture magnitudes, with smallest radius 0.5642 pixels. We did this by assuming a band-limited image, so we can write

$$flux = \int_{0}^{x^{2}+y^{2} < R^{2}} D \, dx \, dy$$

= $\int_{0}^{x^{2}+y^{2} < R^{2}} \sum_{i} D_{i} \frac{\sin \pi(x-x_{i})}{\pi(x-x_{i})} \frac{\sin \pi(y-y_{i})}{\pi(y-y_{i})} \, dx \, dy$
= $\sum_{i} D_{i} \int_{0}^{x^{2}+y^{2} < R^{2}} \frac{\sin \pi(x-x_{i})}{\pi(x-x_{i})} \frac{\sin \pi(y-y_{i})}{\pi(y-y_{i})} \, dx \, dy$
= $\sum_{i} D_{i} c_{i}$

N.b. this is exact if the data's truly band limited.

1

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Photometric	c Algorithms			

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Photometri	c Algorithms			

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Problem: when the jpgtest data arrived, it failed tests; profMean<6> was wrong.

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Photometr	ic Algorithms			

Problem: when the jpgtest data arrived, it failed tests; profMean<6> was wrong.

Explanation: the match between the two algorithms had been done too naïvely.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Photometri	c Algorithms			

Problem: when the jpgtest data arrived, it failed tests;

- profMean<6> was wrong.
- Explanation: the match between the two algorithms had been done too naïvely.

ション ふゆ く 山 マ チャット しょうくしゃ

Solution: be more sophisticated

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Photometr	ic Algorithms			

Problem: when the jpgtest data arrived, it failed tests;

- profMean<6> was wrong.
- Explanation: the match between the two algorithms had been done too naïvely.

うして ふゆう ふほう ふほう うらつ

Solution: be more sophisticated (*I.e.* fix the bug).

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Sky Subtrac	ction			

One of the worst features of the SDSS pipeline is the sky subtraction near bright(ish) galaxies. How did this escape our testing?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

One of the worst features of the SDSS pipeline is the sky subtraction near bright(ish) galaxies. How did this escape our testing?

 $r_e = 5$ pixel log $r_e = 5$ pixel linear

1000 \times 1000 Test images for sky subtraction, \mathcal{A} , \mathcal{A}

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Sky Subtra	ction			

What happens when we run that through photo?

What happens when we run that through photo?

◆□▶ ◆圖▶ ◆厘▶ ◆厘▶

æ

What happens when we run that through photo?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

ж

There's a clear signal of problems; what went wrong?

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Sky Subtrac	tion			

◆□ → < 個 → < 差 → < 差 → < 差 → < 2 → < 2 </p>

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Sky Subtrac	tion			

What went wrong? I don't remember. Theories include:

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Sky Subtrac	ction			

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

What went wrong? I don't remember. Theories include:

• We were too busy to pay attention

What went wrong? I don't remember. Theories include:

- We were too busy to pay attention
- We didn't think this mattered; the objects with $r_e = 20$ are at 15-16th and have flux spread over arcminutes; that's too big relative to the $10' \times 13'$ field.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

What went wrong? I don't remember. Theories include:

- We were too busy to pay attention
- We didn't think this mattered; the objects with $r_e = 20$ are at 15-16th and have flux spread over arcminutes; that's too big relative to the $10' \times 13'$ field.

ション ふゆ く 山 マ チャット しょうくしゃ

• We didn't think about the impact on faint sources near the bright ones (*cf.* Mandelbaum *et al.*)

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Unit/Regres	sion Tests			

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

You all practice Safe Software:

- Code Standards
- Source code managers (svn/hg/git)
- Bug Trackers
- Doxygen + overview documents

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Unit/Regres	sion Tests			

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

You all practice Safe Software:

- Code Standards
- Source code managers (svn/hg/git)
- Bug Trackers
- Doxygen + overview documents and, of course,
- Unit Tests

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Unit/Regres	sion Tests			

You all practice Safe Software:

- Code Standards
- Source code managers (svn/hg/git)
- Bug Trackers
- Doxygen + overview documents and, of course,
- Unit Tests

l'm describing ancient history, so we didn't use jUnit, unittest, boost::test, ...; we wrote our own framework in TCL using these jpgtest simulations.

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Unit/Regres	sion Tests			

You all practice Safe Software:

- Code Standards
- Source code managers (svn/hg/git)
- Bug Trackers
- Doxygen + overview documents and, of course,
- Unit Tests

I'm describing ancient history, so we didn't use jUnit, unittest, boost::test, ...; we wrote our own framework in TCL using these jpgtest simulations. Unfortunately, the more extensive examination of pipeline outputs was originally done by hand, and could not be captured and automated.

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
When show	uld you stop?)		

• A large scale simulator in 1997 with real galaxies etc.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• First Light in 1998

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
When sho	ould you stop?	?		

• A large scale simulator in 1997 with real galaxies etc.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• First Light in 1998

What did we use the 1997 sims for?

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
When shoul	d you stop?			

- A large scale simulator in 1997 with real galaxies etc.
- First Light in 1998

What did we use the 1997 sims for? Nothing. They had problems that weren't worth fixing. *E.g.* the edges of real galaxies triggered the cosmic ray code.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
When shoul	d you stop?			

- A large scale simulator in 1997 with real galaxies etc.
- First Light in 1998

What did we use the 1997 sims for?

Nothing. They had problems that weren't worth fixing. *E.g.* the edges of real galaxies triggered the cosmic ray code.

As first light was just around the corner, we (i.e. I) ignored the last generation of simulations, and waited patiently for reality.

うして ふゆう ふほう ふほう うらつ

IntroductionSDSS ImagingÜbercalMARVELSLSSTPhotometry:Übercalibration

・ロト ・ 日本 ・ 日本 ・ 日本

Э

SDSS-I imaging coverage (white: \geq 5 visits)

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
The Problem	n			

Given a set of SDSS 'runs', α , nights, β , the true and measured (at airmass z and time t) magnitude of a star is given by

$$m = m_{ADU} + a_{lpha} + \left[k_{eta} + \left. \frac{dk}{dt} \right|_{eta} (t - t_{0,eta})
ight] \sec z$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
The Problem	n			

Given a set of SDSS 'runs', α , nights, β , the true and measured (at airmass z and time t) magnitude of a star is given by

$$m = m_{ADU} + a_{lpha} + \left[k_{eta} + \left. \frac{dk}{dt} \right|_{eta} (t - t_{0,eta})
ight] \sec z$$

We wanted to know a_{α} , k_{β} , and $\frac{dk}{dt}\Big|_{\beta}$; the magnitudes *m* are nuisance parameters to be marginalised over.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
The Problem	n			

Given a set of SDSS 'runs', α , nights, β , the true and measured (at airmass z and time t) magnitude of a star is given by

$$m = m_{ADU} + a_{\alpha} + \left[k_{\beta} + \frac{dk}{dt} \Big|_{\beta} (t - t_{0,\beta}) \right] \sec z$$

We wanted to know a_{α} , k_{β} , and $\frac{dk}{dt}\Big|_{\beta}$; the magnitudes *m* are nuisance parameters to be marginalised over. Around 5×10^7 nuisance parameters.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
The Problem	n			

Given a set of SDSS 'runs', α , nights, β , the true and measured (at airmass z and time t) magnitude of a star is given by

$$m = m_{ADU} + a_{lpha} + \left[k_{eta} + \left. \frac{dk}{dt} \right|_{eta} (t - t_{0,eta})
ight] \sec z$$

We wanted to know a_{α} , k_{β} , and $\frac{dk}{dt}\Big|_{\beta}$; the magnitudes *m* are nuisance parameters to be marginalised over. Around 5×10^7 nuisance parameters.

It's pretty straightforward to write down the Normal equations, involving very large but very sparse matrices, and easy enough to solve them iteratively.

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Simulations				

While all of the foregoing is quite simple, we (*i.e.* primarily Nikhil Padmanabhan, David Schlegel, and Doug Finkbeiner) nethertheless decided that a survey simulator was a wise investment of time.

うして ふゆう ふほう ふほう うらつ

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Simulations				

While all of the foregoing is quite simple, we (*i.e.* primarily Nikhil Padmanabhan, David Schlegel, and Doug Finkbeiner) nethertheless decided that a survey simulator was a wise investment of time.

- Start with the actual catalogue of SDSS stars.
- Simulate "true" magnitudes for each of the stars.
- Given an observation of the star, calculate the observed magnitude, assuming values for *a* and *k*.
- Simulate k's time variation using a Gaussian random walk.

うして ふゆう ふほう ふほう うらつ

• Add photon noise to the instrumental magnitudes.

• The *a* and *k* terms are highly correlated

ヘロト ヘアト ヘリア・

3.1

• The *a* and *k* terms are highly correlated

This isn't surprising; we usually scanned at nearly constant z_{\pm}

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Results:	zeropoints			

The zeropoints are good to c. 10mmag, with no visible large-scale power

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Results:	zeropoints			

More quantitatively,

Filter	$\langle \Delta m angle$	σ	σ_3	%(3 σ)	σ_0
u	-1.67	13.38	12.53	0.85	7.27
g	0.82	7.79	7.31	0.72	1.77
r	0.93	7.81	7.26	0.81	1.69
i	0.92	6.84	6.38	0.75	1.32
z	0.97	8.06	7.61	0.68	2.70

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

where all values are in mmag.

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Results:	dk/dt			

The result of setting dk/dt = 0 is a slope of c. 10 mmag

Introduction			SDSS Imaging		Übercal	Übercal		MARVELS	LSST
	Т.	C	D		111	т. •	1.		

Results: Survey Design in Hindsight

| ◆ □ ▶ → @ ▶ → 差 ▶ → 差 → のへぐ

Results: Survey Design in Hindsight

• Changing the magnitude limit leaves the calibrations unchanged.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Changing the magnitude limit leaves the calibrations unchanged. *I.e.* the systematic errors in the atmosphere dominate.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Results:	Survey Design in	n Hindsight		

• Changing the magnitude limit leaves the calibrations unchanged. *I.e.* the systematic errors in the atmosphere dominate.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• Including the "Apache Wheel" runs makes very little difference.

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Results:	Survey Design in	n Hindsight	:	

- Changing the magnitude limit leaves the calibrations unchanged. *I.e.* the systematic errors in the atmosphere dominate.
- Including the "Apache Wheel" runs makes very little difference. We should have saved the telescope time, or integrated longer. Further simulations would tell us which.

うして ふゆう ふほう ふほう うらつ

- Changing the magnitude limit leaves the calibrations unchanged. *I.e.* the systematic errors in the atmosphere dominate.
- Including the "Apache Wheel" runs makes very little difference. We should have saved the telescope time, or integrated longer. Further simulations would tell us which.
- The *dk/dt* slope is our worst systematic. We could have taken data to avoid it backwards non-constant-airmass scans?

うして ふゆう ふほう ふほう うらつ

MARVELS is the planet-searching part of SDSS-III.

MARVELS is the planet-searching part of SDSS-III.

A combination of a medium (R \sim 10000) spectrograph and a Michelson interferometer.

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Data				

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Data				

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Reduction	Strategy			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Expected: 10 m/s at the bright end 45 m/s at the faint end

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Reduction	Strategy			

Expected:10 m/s at the bright end45 m/s at the faint endRealized:50 to 80 m/s100 to 200 m/s

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Reduction	Strategy			

Expected:10 m/s at the bright end45 m/s at the faint endRealized:50 to 80 m/s100 to 200 m/s

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

What went wrong?

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Reduction S	Strategy			

Expected:10 m/s at the bright end45 m/s at the faint endRealized:50 to 80 m/s100 to 200 m/s

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

What went wrong? Given the subject of this meeting, you know the answer: no simulations

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Reduction S	Strategy			

Expected:10 m/s at the bright end45 m/s at the faint endRealized:50 to 80 m/s100 to 200 m/s

ション ふゆ く 山 マ チャット しょうくしゃ

What went wrong? Given the subject of this meeting, you know the answer: no simulations Brian Lee, Duy Cuong Nguyen, and Nathan De Lee spent 9 months writing a nice simulator.

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
The MA	RVELS simula	tor		

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Lots of things included:

- Velocity shift
- Rotational broadening
- Interferometer Comb
- Phase Distortion
- Point Spread Function
- Illumination Profile
- Slant Transform
- Line Spread Function
- Instrument Drift
- Photon Noise
- Readout Noise
- Ghost Contamination

- Sign flip in the fine-scale RV extractor
- Phase-to-velocity conversion approximation improved

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

• Final Julian Dates were exposure starts instead of flux-centred Julian Dates from header

Radial velocity accuracy scales properly with signal to noise

44 m/s is a lot...

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Meta-Lesso	ns Learned			

There are unmodelled features in the instrument which were only discovered after taking data for three years.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Meta-Les	sons Learned			

There are unmodelled features in the instrument which were only discovered after taking data for three years. At this point, it was unclear if we could go back and salvage the data given the existing calibrations.

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Meta-Les	sons Learned			

There are unmodelled features in the instrument which were only discovered after taking data for three years. At this point, it was unclear if we could go back and salvage the data given the existing calibrations.

Result: We decided to terminate the MARVELS project early, and did not proceed to build a second spectrograph.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Meta-Les	sons Learned			

There are unmodelled features in the instrument which were only discovered after taking data for three years. At this point, it was unclear if we could go back and salvage the data given the existing calibrations.

Result: We decided to terminate the MARVELS project early, and did not proceed to build a second spectrograph. Moral: A simulator, and associated reduction pipeline, delivered at the same time as the instrument could have saved the project.

ション ふゆ く 山 マ チャット しょうくしゃ

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
LSST				

On Monday, Andy Connolly gave a summary of his group's heroic efforts; how should we use his simulations?

On Monday, Andy Connolly gave a summary of his group's heroic efforts; how should we use his simulations? Currently we're using them to validate/commission pipelines.

On Monday, Andy Connolly gave a summary of his group's heroic efforts; how should we use his simulations? Currently we're using them to validate/commission pipelines. You might note that the most optimistic date for LSST first light is 2018.

On Monday, Andy Connolly gave a summary of his group's heroic efforts; how should we use his simulations? Currently we're using them to validate/commission pipelines. You might note that the most optimistic date for LSST first light is 2018.

2009年12月5日大曜日

HSC on Subaru (1.8deg²)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

2009年12月3日木曜日

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
LSST Sir	ms Problems			

You have to be careful to ensure that pipeline problems are not in the sims

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
LSST Sim	s Problems			

You have to be careful to ensure that pipeline problems are not in the sims

E.g. we started seeing single-pixel events (looking like cosmic rays) in the sims; it turned out that the problem was connected to simulating bright stars.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
LSST Sir	ns Problems			

You have to be careful to ensure that pipeline problems are not in the sims

E.g. we started seeing single-pixel events (looking like cosmic rays) in the sims; it turned out that the problem was connected to simulating bright stars.

Problems in techniques for simulating objects and background:

test_885336231-r_pipeQa.PstShapeQaAnalysis

x [pixe	18]			
ellipticity all : timestamp-2011-08_01	0:00:50			
Label	Timesterno	Value	Linits	Comment
ticity -^- R10,1_\$10,0	2011-07-31 31:22:54	0.0868	[0.0000, 0.2000]	median psf ellipticity (rstar-86)
ticity -*- R:0,1_\$:0,1	2011-07-31 31:23:37	0.0583	[0.0000, 0.2000]	median pef ellipticity (netar-71)
Bolty -*- R.0, 1_5:0,2	2011-07-31 21:24:30	0.0638	[0.0000, 0.2000]	median paf elilipticity (retar-64)
66ky -^ 8.0,1_5:1,0-	2011-07-31 21:25:18	0.1292	(0.0000, 0.2000)	median pail ellipticity (retar-75)
568y - 8.0,1_5(1,1-	2011-07-31 21:26:83	0.0945	[0.0000, 0.2000]	median psf ellipticity (nstan-65)
ticky -^- R.0, 1_S:1,2	2011-07-31	0.0753	[0.0000,	median psf ellipticity (nstar-66)

Focal Plane X

picky zanitrovani w zanitrovani pos picky zanitrovani pos

test_885338231-r_pipeQa.

æ

test_855336231-r_pipeQa.PafShapeQaAnalysia

0100, Active median paf edia 0101, Active median paf edia 0102, Active median paf edia 0110, Active median paf edia 0111, Active

median paf edit

[show description]

PSE Shape (EWHM =1.10)

test_885336231-r_pipeQa.PstShapeQaAnalysis

Timesterno	Value	Linits	Comment
2011-07-31 31:22:54	0.0868	[0.0000, 0.2000]	median psf ellipticity (nstar-86)
2011-07-31 31:23:37	0.0583	[0.0000, 0.2000]	median paf ellipticity (natar-78)
2011-07-31 21:24:30	0.0638	[0.0000, 0.2000]	median paf el3pticity (retar-64)
2011-07-31 21:25:18	0.1292	(0.0000, 0.2000)	median pail ellipticity (retar-75)
2011-07-31 21:26:03	0.0945	[0.0000, 0.2000]	median psf ellipticity (nstar-65)
2011-07-31 31(27)03	0.0753	[0.0000, 0.2000]	median pdf ellipticity (nstar-66)
	Timestamp 2011-07-31 2011-07-31 2011-07-31 21:22-37 2011-07-31 21:22-35 2011-07-31 21:22:08 2011-07-31 21:22:08 2011-07-31 21:22:08	Timestamp Value 2011-07-31 0.0868 21122/32 0.0868 2011-07-31 0.0638 2011-07-31 0.0638 2011-07-31 0.1038 2011-07-31 0.1038 2011-07-31 0.1038 2011-07-31 0.1038 2011-07-31 0.1038 2011-07-31 0.1045 2120:08 0.0145 2120:08 0.0753	Thesetamp Value Limits 2011-07-31 0.3848 [0.0000, 0.3848 2011-07-31 0.3848 [0.0000, 0.3848 2011-07-31 0.3848 [0.0000, 0.3848 2011-07-31 0.3848 [0.0000, 0.3848 2011-07-31 0.3848 [0.0000, 0.3888 2011-07-31 0.3848 [0.0000, 0.3888 2011-07-31 0.1382 [0.0000, 0.3888 2011-07-31 0.1382 [0.0000, 0.3888 2011-07-31 0.1382 [0.0000, 0.3888 2011-07-31 0.1382 [0.0000, 0.3888 2011-07-31 0.1382 [0.0000, 0.3888 2011-07-31 0.1382 [0.0000, 0.3888

Show all

Course: 88338214 -Test prod_a. Service Const. Co

Is this correct?

Inc.INITY Copyon Anthenia Copy

0.2

э

median psf ellipticity (nstar-66

test_885336231-r_pipeQa.PstShapeQaAnalysis

pipeQa.PhotCompareQaAnalysis.ap-cat pipeQa.PhotCompareQaAnalysis.inst-cat pipeQa.PhotCompareQaAnalysis.mod-ca nine@a PhotCompare@a&palysis mod-ins pipeQa.PhotCompareQaAnalysis.psf-ap pipeQa.PhotCompareQaAnalysis.psf-cat pipeOa.PhotCompareOaAnalysis.psf-inst pipeQa.PhotCompareQaAnalysis.psf-mod pipeQa.PsfShapeQaAnalysis

pipeQa.VignettingQa pipeQa.ZeropointFitQa

test 885336231-r pizeQa.

Is this correct? Does it matter?

redian pdf ellipticity ~ R:0,1_S:1,2-

test_855336231-r_pipeQa.PafShapeQaAnalysia

PSE Shape (EWHM =1.10)

de all

Focal Plane X

nine@a PhotComnare@a&nalysis mod-in pipeQa.PhotCompareQaAnalysis.psf-cal pipeOa.PhotCompareOaAnalysis.psf-inst pipeQa.PhotCompareQaAnalysis.psf-mod pipeQa.PsfShapeQaAnalysi pipeQa.VignettingQa pipeQa ZeropointFitQa

Is this correct? Does it matter? It depends. For predicting weak lensing, Yes. Median PSF Ellipticity

Comment

median psf elilipticity (rstar-65)

PSE Shape (EWHM =1.10)

edian paf ellipticity -> Rs0, 1_S:1,2-

э

Focal Plane X
Figure 1.0: Aledian PSF Ellipticity
medibilities.area timestamo-2011-08 01 00.08-01

PSF FWHM (arcsec)

Focal Plane 2

Is this correct? Does it matter? It depends. For predicting weak lensing, Yes. For developing codes, probably No.

median out eliipticity (retar-86)

median out ellipticity (retar-78

median caf elilipticity (retar-64)

median pol ellipticity (retar-75)

050 000

x (pixels) - e=0.1

PSE Shape /EWHM =1.10)

Figure 2.0:PSF ellipticity all petDilp-all.png: timestamp-2011-08_01 00:08:58 Label Time median pd ellipticity ^ R.0,1_50,0- 2011

nection per ellipticity -> Rx0,1_\$x0.1-

section per ellipticity -> R:0,1_5:0,2-

redian pall ellipticity -> R:0, 1, 5:1,0

median pal ellipticity ~ 8.0,1_S(1,1-011, Active median pal ellipticity ~ 8:0,1_S(1,2median pal ellipticity ~ 8:0,1_S(1,2-

450 exposures (around an hour of data); 6 Tb. All were put through the current version of the pipelines, and the resulting catalogues were stuffed into mySql.

450 exposures (around an hour of data); 6 Tb. All were put through the current version of the pipelines, and the resulting catalogues were stuffed into mySql.

We (*i.e.* Steve Bickerton and Andy Becker) post-processed the catalogues to generate summary web pages.

450 exposures (around an hour of data); 6 Tb. All were put through the current version of the pipelines, and the resulting catalogues were stuffed into mySql. We (*i.e.* Steve Bickerton and Andy Becker) post-processed the catalogues to generate summary web pages. This is non-trivial

with this much data; we'll need the tools in 20XX, and we may as well use them now.

may as well use them now.

e.g.

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

・ロト ・四ト ・ヨト・

∋) ∋

Note slope in SuprimeCam data

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Why Simula	ite?			

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Why Simula	te?			

• Dark energy experiments; w'''. Dominated by systematics.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Why Simula	ite?			

• Dark energy experiments; w^{'''}. Dominated by systematics. Is Great101 sufficient?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

 Dark energy experiments; w^{'''}. Dominated by systematics. Is Great101 sufficient? What do 15s exposures do to the PSF correlations?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

• Dark energy experiments; w^{'''}. Dominated by systematics. Is Great101 sufficient? What do 15s exposures do to the PSF correlations? How does dithering the field centres help?

・ロト ・ 日 ・ モート ・ 田 ・ うへで

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Why Simula	ate?			

• Dark energy experiments; w^{'''}. Dominated by systematics. Is Great101 sufficient? What do 15s exposures do to the PSF correlations? How does dithering the field centres help? How does a realistic distribution of seeing, defects, dithers imact the statistical efficiency of co-add based shape measurements?

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Why Simu	late?			

• Dark energy experiments; w^{'''}. Dominated by systematics. Is Great101 sufficient? What do 15s exposures do to the PSF correlations? How does dithering the field centres help? How does a realistic distribution of seeing, defects, dithers imact the statistical efficiency of co-add based shape measurements?

うして ふゆう ふほう ふほう うらつ

Background subtraction

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Why Simula	ate?			

- Dark energy experiments; w^{'''}. Dominated by systematics. Is Great101 sufficient? What do 15s exposures do to the PSF correlations? How does dithering the field centres help? How does a realistic distribution of seeing, defects, dithers imact the statistical efficiency of co-add based shape measurements?
- Background subtraction
 Should background estimation be a part of coaddition generation?

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Why Simula	ate?			

- Dark energy experiments; w^{'''}. Dominated by systematics. Is Great101 sufficient? What do 15s exposures do to the PSF correlations? How does dithering the field centres help? How does a realistic distribution of seeing, defects, dithers imact the statistical efficiency of co-add based shape measurements?
- Background subtraction

Should background estimation be a part of coaddition generation? How should we handle IR Cirrus?

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Why Simula	ate?			

• Dark energy experiments; w^{'''}. Dominated by systematics. Is Great101 sufficient? What do 15s exposures do to the PSF correlations? How does dithering the field centres help? How does a realistic distribution of seeing, defects, dithers imact the statistical efficiency of co-add based shape measurements?

- Background subtraction
 Should background estimation be a part of coaddition generation? How should we handle IR Cirrus?
- Deblender

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Why Simul	ate?			

- Dark energy experiments; w^{'''}. Dominated by systematics. Is Great101 sufficient? What do 15s exposures do to the PSF correlations? How does dithering the field centres help? How does a realistic distribution of seeing, defects, dithers imact the statistical efficiency of co-add based shape measurements?
- Background subtraction

Should background estimation be a part of coaddition generation? How should we handle IR Cirrus?

Deblender

I can imagine how to write a deblender that handles: Crowded star fields *and* clusters of galaxies; many epochs

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Why Simul	ate?			

- Dark energy experiments; w^{'''}. Dominated by systematics. Is Great101 sufficient? What do 15s exposures do to the PSF correlations? How does dithering the field centres help? How does a realistic distribution of seeing, defects, dithers imact the statistical efficiency of co-add based shape measurements?
- Background subtraction

Should background estimation be a part of coaddition generation? How should we handle IR Cirrus?

Deblender

I can imagine how to write a deblender that handles: Crowded star fields *and* clusters of galaxies; many epochs Am I crazy?

Introduction	SDSS Imaging	Übercal	MARVELS	LSST
Why Simul	ate?			

- Dark energy experiments; w^{'''}. Dominated by systematics. Is Great101 sufficient? What do 15s exposures do to the PSF correlations? How does dithering the field centres help? How does a realistic distribution of seeing, defects, dithers imact the statistical efficiency of co-add based shape measurements?
- Background subtraction

Should background estimation be a part of coaddition generation? How should we handle IR Cirrus?

Deblender

I can imagine how to write a deblender that handles: Crowded star fields *and* clusters of galaxies; many epochs Am I crazy? Assume a non-informative prior.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

• Scientists: Perfect, of course.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

- Scientists: Perfect, of course.
- Managers: They're good enough already

- Scientists: Perfect, of course.
- Managers: They're good enough already
- RHL: Good enough for the problems to be invisible to the pipelines

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- Scientists: Perfect, of course.
- Managers: They're good enough already
- RHL: Good enough for the problems to be invisible to the pipelines

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

I.e. it's an arms race; the sims must keep a step ahead of the pipelines.

Introduction

When Should we Stop Simulating?

It's important that we're convinced our Monte Carlo simulation and our data match, because we're deriving our calibrations from the Monte Carlo," explains Kerstin Perez. [Monte Carlo allows us to understand] how jets shower and progress through the detector – "an incredibly complicated process that no-one can really describe fully"

900