

Radiation damage on Gaia CCDs

Modelling to Mitigate the Threat

Thibaut Prod'homme

Leiden Observatory

I.What is CCD Radiation Damage?

2. Modelling to Mitigate the Threat!

3. Examples of Results

4. Mitigation at the Image Processing Level

5. Conclusion

Thibaut Prod'homme - Leiden Observatory

I. What is CCD Radiation Damage?

Thibaut Prod'homme - Leiden Observatory

Radiation environment

Gaia

Solar wind

I. What is CCD Radiation Damage?

Radiation environment

NASA Solar Dynamics Observator)

keV < E protons < MeV

I.What is CCD Radiation Damage?

Displacement damage

- Collision Proton Si atom
 Vacancy Interstitial atom
- Vacancy can bind with impurities (O, P)
- Vacancy Impurity complex
 introduce energy level in semiconductor band-gap
- Energy levels trapped the transferred charges in the CCD
 increase the Charge Transfer Inefficiency CTI

CTI effects on the images

I.What is CCD Radiation Damage?

Hardware CTI countermeasures

charge injections

Periodical Charge Injections

I.What is CCD Radiation Damage?

Hardware CTI countermeasures

Supplementary Buried Channel = notch

2. Modelling to Mitigate the Threat!

Thibaut Prod'homme - Leiden Observatory

How models supported CTI mitigation?

BY >>

- Understanding experimental data
- Deepening our understanding of CTI
- Characterizing in detail the CTI effects
- Calibrating for CTI in the on-ground data processing
- Testing the CTI mitigation strategy

This required a variety of models:

Publication date Author 'name' • level • type • computational load 1998 L. Lindegren • trap • MC physical • high 2005 A. Short • trap • MC physical • high 2007 A. Short • image • analytic physical • moderate 2008 L. Lindegren 'CDM01' • image • analytic phenomenological • low 2009 A. Short 'CDM02' • image • analytic semi-physical • low 2010 G. Seabroke • pixel architecture • analytic physical • high 2010 A. Short 'CDM03' • image • analytic semi-physical • low 2011 T. Prod'homme • trap • MC physical • high 2011 B. Holl • statistical • analytic phenomenological • low

3. Examples of Results

Thibaut Prod'homme - Leiden Observatory

This required a variety of models:

Publication date Author 'name' • level • type • computational load 1998 L. Lindegren • trap • MC physical • high 2005 A. Short • trap • MC physical • high 2007 A. Short • image • analytic physical • moderate 2008 L. Lindegren 'CDM01' • image • analytic phenomenological • low 2009 A. Short 'CDM02' • image • analytic semi-physical • low 2010 G. Seabroke • pixel architecture • analytic physical • high 2010 A. Short 'CDM03' • image • analytic semi-physical, low 2011 T. Prod'homme • trap • MC physical • high 2011 B. Holl • statistical • analytic phenomenological • low

This required a variety of models

- Why so many different models and why not using what already existed?
- Different operation of the CCD than e.g., HST:
- TDI Time-delayed integration = CCD constantly readout
- =>Very low background (Ie-/pixel at readout),
- => Very low signal level even for bright stars for a part of the transit
- No full frame data, ID images

Understanding experimental data

+ Deepening our understanding of CTI

Discrepancy in image location bias and charge loss between Sira (now Surrey) and Astrium first tests at same signal level

model 2005 A. Short (trap level • MC physical) showed that:

A difference in the background level of a few electrons makes a big difference

CTI models must be density driven not volume driven

Understanding experimental data

model 2011 T. Prod'homme (trap level • MC physical)

SBCs are not functioning properly in the upper CCD half

Understanding experimental data

SBC issue

Supplementary Buried Channel

I.What is CCD Radiation Damage?

Characterizing in detail the CTI effects

We assessed the impact of CTI on Gaia astrometry Prod'homme et al. 2011b, Holl et al. 2011

I. on the image location estimation using 2011 T. Prod'homme MC physical

- Generating a large set of synthetic CTI-free and damaged Gaialike images (~40 000 images) using CEMEA
- Computing the theoretical limit to image location
- Applying the Gaia image parameter determination algorithms

Image location

Image location requirements

per CCD observation

Intrinsic loss of image location accuracy

due to decrease in S/N induced by charge loss

Can only be prevented by avoiding trapping Need for Hardware CTI countermeasures

Strong bias in the image location

due to image distortion

Hardware CTI countermeasures useful but not enough Need for CTI calibration

Characterizing in detail the CTI effects

We assessed the impact of CTI on Gaia astrometry Prod'homme et al. 2011b, Holl et al. 2011

II. on the astrometric solution AGIS using2011 B. Holl (statistical level • analytic phenomenological)

- AGIS + image locations for all (single) stars = astrometric parameters for each stars
- Solution for I million stars (semi-realistic star distribution in G)
- CTI errors vary as func. of G, t since last CI, (prev.) Solar Cycle

CTI induced parallax errors

Errors vs Solution Residuals

Errors vs Solution Residuals

4. Mitigation at the Image Processing Level

Thibaut Prod'homme - Leiden Observatory

Forward modelling approach

iterative parameter update

4. Mitigation at the Image Processing Level

Image location residual bias

4. Mitigation at the Image Processing Level

Final astrometric accuracy

Final astrometric accuracy

5. Conclusion

Thibaut Prod'homme - Leiden Observatory

Thanks to important modelling efforts

supported by experimental tests

we were able to demonstrate that:

CCD radiation damage

is not a threat to Gaia anymore;

we can calibrate for it!

4. Conclusion

however...

only first data from Gaia in 2013

will tell us if our predictions were right

The END

Thank you!

Thibaut Prod'homme - Leiden Observatory